

## ENGINEERED WOOD PRODUCTS <br> Technical Data Guide

Nordic ${ }^{\oplus}$--Joist | Norbord ${ }^{\ominus}$ Rim Board \| Triforce ${ }^{\oplus}$ Open Joists | CP-LAM LVL | PWT Treated LVL Anthony ${ }^{\oplus}$ Beams \& Columns \| LAMCO Engineered Framing Lumber \| Simpson ${ }^{\circledR}$ Engineered Connectors

## SOLID-SAWN JOIST <br> DESIGN PROPERTIES

Chantiers Chibougamau Ltd. harvests its own trees, which enables Nordic products to adhere to strict quality control procedures throughout the manufacturing process. Every phase of the operation, from forest to the finished product, reflects our commitment to quality
Nordic ${ }^{\oplus}$ Engineered Wood I-joists use only finger-jointed black spruce lumber in their flanges ensuring consistent quality, superior strength, and longer span carrying capacity.


DESIGN PROPERTIES FOR NORDIC ${ }^{\circledR}$ I-JOISTS

| $\begin{aligned} & \text { JOIST } \\ & \text { DEPTH } \end{aligned}$ | $\begin{aligned} & \text { JOIST } \\ & \text { SERIES } \end{aligned}$ | $\begin{gathered} \mathrm{El}(\mathrm{c}) \\ \left(10^{6} \mathrm{Ibf-in} .^{2}\right) \end{gathered}$ | $\begin{gathered} M^{(d)} \\ (\mathrm{lbf}-\mathrm{ft}) \end{gathered}$ | $\begin{aligned} & V^{(\mathrm{e})} \\ & (\mathrm{lbf}) \end{aligned}$ | $\begin{aligned} & \mathrm{IR}^{(\mathrm{f})} \\ & (\mathrm{I} \text { bf) } \end{aligned}$ | IR w/WS ${ }^{(g)}$ ( bf ) | $\begin{aligned} & \text { ER }{ }^{(h)} \\ & (\mathrm{lbf}) \end{aligned}$ | $\begin{gathered} \mathrm{K}^{(\mathrm{i})} \\ \left(10^{6} \mathrm{Ibf}\right) \end{gathered}$ | WEIGHT <br> ( $\mathrm{lbf} / \mathrm{ft}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9-1/2" | NI-20 | 145 | 2,590 | 1,120 | 1,700 | 1,700 | 900 | 4.94 | 2.55 |
|  | NI-40x | 218 | 2,900 | 1,200 | 2,240 | 2,620 | 1,120 | 4.94 | 2.65 |
|  | NI-60 | 231 | 3,810 | 1,200 | 2,240 | 2,620 | 1,120 | 4.94 | 2.78 |
|  | NI-80 | 324 | 5,385 | 1,200 | 2,380 | 2,790 | 1,190 | 4.94 | 3.27 |
| 11-7/8" | NI-20 | 253 | 3,355 | 1,420 | 1,800 | 1,800 | 900 | 6.18 | 2.85 |
|  | NI-40x | 371 | 3,760 | 1,480 | 2,750 | 2,930 | 1,250 | 6.18 | 2.85 |
|  | NI-60 | 396 | 4,935 | 1,480 | 2,750 | 2,930 | 1,250 | 6.18 | 2.99 |
|  | NI-80 | 547 | 6,980 | 1,480 | 2,900 | 3,120 | 1,330 | 6.18 | 3.45 |
|  | NI-90 | 601 | 8,780 | 1,925 | 3,670 | 3,670 | 1,400 | 6.18 | 3.45 |
| 14" | NI-40x | 540 | 4,530 | 1,730 | 2,750 | 3,240 | 1,250 | 7.28 | 3.00 |
|  | NI-60 | 584 | 5,945 | 1,730 | 2,750 | 3,240 | 1,250 | 7.28 | 3.15 |
|  | $\mathrm{NI}-80$ | 802 | 8,405 | 1,730 | 3,310 | 3,840 | 1,330 | 7.28 | 3.75 |
|  | NI-90 | 877 | 10,570 | 2,125 | 3,820 | 3,820 | 1,690 | 7.28 | 3.75 |
| $16 "$ | NI-60 | 799 | 6,895 | 1,970 | 2,750 | 3,240 | 1,250 | 8.32 | 3.46 |
|  | NI-80 | 1,092 | 9,745 | 1,970 | 3,310 | 3,840 | 1,330 | 8.32 | 3.95 |
|  | NI-90 | 1,187 | 12,260 | 2,330 | 3,930 | 3,930 | 1,875 | 8.32 | 3.95 |

Highlighted sizes indicates stocked depths.

For SI: $1 \mathrm{lbf}=4.448 \mathrm{~N}$,
$1 \mathrm{lbf}-\mathrm{in} 2=0.00287 \mathrm{~N}-\mathrm{m} 2$,
1 inch $=25.4 \mathrm{~mm}$.
(a) The tabulated values are design values for normal duration of load. All values, except for El and K, are permitted to be adjusted for other load durations as permitted by the code for solid sawn lumber.
(b) The vertical (bearing) load capacity is 2,000 $\mathrm{lb} / \mathrm{ft}$ without bearing stiffeners.
(c) Bending stiffness (EI) of the I-joist.
(d) Moment capacity $(\mathrm{M})$ of the I-joist, which shall not be increased by any code allowed repetitive member use factor.
(e) Shear capacity (V) of the I-joist.
(f) Intermediate reaction (IR) of the I-joist with a minimum bearing length of 3-1/2 inches without bearing stiffeners.
(g) Intermediate reaction (IR w/WS) of the I-joist with a minimum bearing length of 3-1/2 inches with bearing stiffeners.
(h) End reaction (ER) of the I-joist with a minimum bearing length of 1-3/4 inches without bearing stiffeners. Higher end reactions are permitted. For a bearing length of 4 inches, the end reaction may be set equal to the tabulated shear value. Interpolation of the end reaction between $1-3 / 4$ and 4 -inch bearing is permitted. For end reaction values over 1,550 lbf, bearing stiffeners are required.
(i) Coefficient of shear deflection (K). For calculating uniform load and center-point load deflections of the l-joist in a simple-span application, use Eqs. 1 and 2.

Uniform Load:
$\delta=\frac{5 \omega \ell^{4}}{384 E I}+\frac{\omega \ell^{2}}{K}$

Center-Point Load:
$\delta=\frac{P \ell^{3}}{48 E I}+\frac{2 P \ell}{K}$

Where: $\quad \delta=$ calculated deflection (in.)
$\omega=$ uniform load (lbf/in.)
$\ell=$ design span (in.)
$P=$ concentrated load (lbf)
$E I=$ bending stiffness of the I-joist (lbf-in.2)
$K=$ coefficient of shear deflection (lbf)

## SOLID-SAWN JOIST

ALLOWABLE FLOOR SPANS

ALLOWABLE FLOOR SPANS - Live Load = 40 psf, Dead Load = 10 psf
Live Load Deflection Limit of L/480

| $\begin{aligned} & \text { JOIST } \\ & \text { DEPTH } \end{aligned}$ | $\begin{aligned} & \text { JOIST } \\ & \text { SERIES } \end{aligned}$ | SIMPLE SPANS |  |  |  | MULTIPLE SPANS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ON CENTER SPACING |  |  |  | ON CENTER SPACING |  |  |  |
|  |  | 12" | $16^{\prime \prime}$ | 19.2" | 24" | 12" | $16^{\prime \prime}$ | 19.2" | 24" |
| 9-1/2" | NI-20 | 16'-7" | 15'-3" | 14'-5" | 13'-6" | 18'-1" | 16'-7" | 15'-8" | 13'-5" |
|  | NI-40x | 18'-8" | 17'-0" | 16'-1" | 15'-0" | 20'-4" | 18'-5" | 16'-10" | 15'-0" |
|  | NI-60 | 18'-11" | 17'-4" | 16'-4" | 15'-3" | 20'-8" | 18'-10" | 17'-9" | 16'-7" |
|  | NI-80 | 20'-11" | 19'-1" | 18'-0" | 16'-9" | 22'-9" | 20'-9" | 19'-6" | 18'-2" |
| 11-7/8" | NI-20 | 19'-11" | 18'-3" | 17'-3" | 16'-1" | 21'-8" | 19'-10" | 17'-9" | 14'-2" |
|  | NI-40x | 22'-2" | 20'-3" | 19'-2" | 17'-2" | 24'-2" | 21'-0" | 19'-2" | 17'-1" |
|  | NI-60 | 22'-8" | 20'-8" | 19'-6" | 18'-2" | 24'-8" | 22'-6" | 21'-2" | 19'-8" |
|  | NI-80 | 24'-11" | 22'-8" | 21'-4" | 19'-11" | 27'-1" | 24'-8" | 23'-3" | 21-7" |
|  | NI-90 | 25'-7" | 23'-3" | 21'-11" | 20'-5" | 27'-10" | 25'-4" | 23'-10" | 22'-2" |
| $14^{\prime \prime}$ | NI-40x | 25'-2" | 22'-11" | 21'-2" | 18'-11" | 26'-8" | 23'-1" | 21'-1" | 18'-10" |
|  | NI-60 | 25'-9" | 23'-6" | 22'-2" | 20'-8" | 28-0" | 25'-7" | 24'-1" | 21'-7" |
|  | NI-80 | 28'-3" | 25'-9" | 24'-3" | 22'-7" | 30'-10" | 28'-0" | 26'-5" | 24'-6" |
|  | NI-90 | 29'-0" | 26'-5" | 24'-10" | 23'-1" | 31'-7" | 28'-9" | 27'-1" | 25'-2" |
| 16" | NI-60 | 28'-6" | 26'-0" | 24'-7" | 22'-10" | 31'-1" | 28'-4" | 26'-0" | 21'-9" |
|  | NI-80 | 31'-4" | 28'-6" | 26'-10" | 25'-0" | 34'-2" | 31'-1" | 29'-3" | 26'-3" |
|  | NI-90 | 32'-1" | 29'-3" | 27'-6" | 25'-7" | 35'-0" | 31'-10" | 29'-11" | 27'-10" |

Highlighted sizes indicates stocked depths.

## NOTES:

1. Allowable clear span applicable to residential floor construction with a design live load of 40 psf and dead load of 10 psf . The live load deflection is limited to $L / 480$ as shown, and the total load deflection to $L / 360$. For multiple-span applications, the end spans shall be $40 \%$ or more of the adjacent span.
2. Spans are based on a composite floor with glued-nailed sheathing meeting the requirements for APA Rated Sheathing or APA Rated STURD-I-FLOOR conforming to PRP-108, PS 1, or PS 2 with a minimum thickness of $19 / 32$ inch ( $40 / 20$ or 20 oc) for a joist spacing of 19.2 inches or less, or $23 / 32$ inch ( $48 / 24$ or $240 c$ ) for a joist spacing of 24 inches. Adhesive shall meet APA Specification AFG-01 or ASTM D3498.
3. Minimum bearing length shall be $1-3 / 4$ inches for the end bearings, and $3-1 / 2$ inches for the intermediate bearings.
4. Bearing stiffeners are not required when I-joists are used with the spans and spacing given in these tables, except as required for hangers.
5. These span charts are based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties.
6. For ceramic tile applications, spacings greater than 16 " o.c. are typically not recommended.


## CPI-90 JOIST

DIMENSIONS\&SPANS
CPI-PRO JOIST DIMENSIONS - LVL


7/16" OSB Web
$3-1 / 2^{\prime \prime} \times 1-1 / 2^{\prime \prime}$ Flange


| CPI-90 | I-Joist Depth | Coastal Code | APA Code | $\begin{gathered} \mathrm{El}^{(4)} \\ \left(\mathrm{X} 10^{6} \mathrm{lb}-\mathrm{in}^{2}\right) \end{gathered}$ | $\begin{gathered} \mathbf{M}^{(5)} \\ (\mathrm{ft}-\mathrm{lb}) \end{gathered}$ | $\mathbf{V}^{(6)}$ <br> (lb) | $\begin{aligned} & \hline \mathbf{I R}^{(7)} \\ & (\mathrm{Ib}) \end{aligned}$ | $\begin{gathered} \hline \mathrm{ER}^{(8)} \\ (\mathrm{lb}) \end{gathered}$ | $\begin{gathered} K^{(9)} \\ \left(\mathrm{X} 10^{6} \mathrm{Ib}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 11-7/8" | CPI 9012 | PRI-90 | 661 | 10255 | 1925 | 3355 | 1400 | 6.92 |
|  | 14 | CPI 9014 | PRI-90 | 965 | 12235 | 2125 | 3355 | 1400 | 8.17 |
|  | $16 "$ | CPI 9016 | PRI-90 | 1306 | 14020 | 2330 | 3355 | 1400 | 9.35 |

Highlighted sizes indicates stocked depths.

1. The tabulated design properties are for normal duration of load. All properties, except El and k , may be adjusted for other load durations as permitted by the code.
2. PRI-400 joist series designation. Design properties meet or exceed the requirements of the PRI-400 Performance Standard for APA EWS I-joist.
3. Coastal Forest Products Corporation proprietary joist series designation.
4. Bending stiffness (EI)
5. Moment capacity ( M ). The tabulated values shall not be increased by any code-allowed repetitive member factor.
6. Shear capacity (V).
7. Intermediate reaction capacity (iR) of the immediate I-joist without web stiffeners and a minimum bearing length of $3-1 / 2$ inches.
8. End reaction capacity (ER) of the I-joist without web stiffeners and a minimum bearing length of $1-3 / 4$ inches.
9. Coefficient of shear deflection (k). Use equations 1 or 2 to calculate uniform load or center point load deflections in a simple-span application.

Uniform Load: Center-Point Load:
$(1) \delta=5 \frac{\omega \ell^{4}+}{384 E I} \quad \frac{\omega \ell^{2}}{K}$
(2) $\delta=\frac{P \ell^{3}}{48 E I}+\frac{2 P l}{K}$
10. $2 \times 4$ web stiffeners required. Attach with 10 nails ( $3-1 / 2^{\prime \prime}$ long $x 0.131$ " diameter)
11. $2 \times 4$ web stiffeners required. Attach with 8 nails ( $3-1 / 2^{\prime \prime}$ long $\times 0.131$ " diameter)

Where: $\delta=$ calculated deflection (in.)
$\omega=$ uniform load (lbfin.)
$\ell=$ design span (in.)
$P=$ concentrated load (lbf)
$E I=$ bending stiffness of the CPI-joist (lbf-in.2)
$K=$ coefficient of shear deflection (lbf)

|  | Allowable Floor Spans |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CPI Joist Series | CPI Joist Depth | 12" O.C. | 16" O.C. | 19.2" O.C. | 24" O.C. | 12" O.C. | 16" O.C. | 19.2" O.C. | 24" O.C. |
| CPI-90 | 9-1/2" | 22'-2" | 20'-2" | 19'-0" | 17'-8" | 24'-1" | 21'-11" | 20'-7" | 19'-2" |
|  | 11-7/8" | 26' - 4' | 23'-11" | 22'-7" | 21'-0" | 28'-8" | 26'-1" | 24'-6" | 22'-9" |
|  | $14{ }^{\prime \prime}$ | 29'-10" | 27'-2" | 25'-7" | 23'-9" | 32'-7" | 29'-7" | 27'-10" | 25' - 10" |
|  | $16^{\prime \prime}$ | 33' - 0" | 30'-1" | 28'-4" | 26'-4" | 36'-0" | 32'-9" | 30' - 10" | 26'-7" |

Highlighted sizes indicates stocked depths.

## Notes:

1. Table values apply to uniformly loaded CPI joists.

Use sizing software to analyze conditions outside of the scope of this table such as commercial floors, cantilevers or concealed loads.
2. Span is measured from face to face of supports. Use beam sizing software to analyze multiple span CPI joists if the length of any span is less than half the length of an adjacent span.
3. Live Load deflection is limited to L/480.
4. Table values assume sheathing is glued and nailed to the CPI joists. Reduce spans by 12 " if sheathing is nailed only.
5. Table values are based on $1-3 / 4^{\prime \prime}$ end and $3-1 / 2^{\prime \prime}$ intermediate bearing lengths without web stiffeners.

## NORDIC® ${ }^{\circledR}$-JOIST

## UNIFORM LOADS

ALLOWABLE UNIFORM FLOOR LOADS (PLF) - 100\%

| $\begin{aligned} & \text { JOIST } \\ & \text { DEPTH } \end{aligned}$ | $\begin{aligned} & \text { JOIST } \\ & \text { SERIES } \end{aligned}$ | CRITERIA | CLEAR SPAN (ft) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 |
| 9-1/2" | NI-40 | $\begin{aligned} & \mathrm{I} / 480 \mathrm{LL} \\ & \mathrm{I} / 480 \mathrm{TL} \\ & \hline \end{aligned}$ | 165 | 133 | $\begin{array}{r} 81 \\ 111 \\ \hline \end{array}$ | 52 <br> 95 | 36 72 | 25 51 | 18 37 | 14 28 | 11 22 | ---- | ---- | ---- |
|  | NI-60 | $\begin{aligned} & \mathrm{V} / 480 \mathrm{LL} \\ & \mathrm{I} / 480 \mathrm{TL} \\ & \hline \end{aligned}$ | 218 | 175 | $\begin{aligned} & 122 \\ & 146 \\ & \hline \end{aligned}$ | $\begin{array}{r} 80 \\ 126 \\ \hline \end{array}$ | $\begin{array}{r} 55 \\ 110 \\ \hline \end{array}$ | $\begin{array}{r} 39 \\ 79 \\ \hline \end{array}$ | 29 59 | 22 44 | 17 34 | 13 <br> 27 | 11 22 | --- |
|  | NI-80 | $\begin{aligned} & \text { I/480 LL } \\ & \mathrm{I} / 480 \mathrm{TL} \end{aligned}$ | 231 | 186 | 155 | $\begin{aligned} & 120 \\ & 133 \end{aligned}$ | $\begin{array}{r} 75 \\ \hline 717 \end{array}$ | $\begin{array}{r} 54 \\ 104 \end{array}$ | $\begin{aligned} & 40 \\ & \hline 41 \end{aligned}$ | $30$ | 24 48 | $\begin{aligned} & 19 \\ & 19 \end{aligned}$ | 15 30 | 12 25 |
| 11-7/8' | NI-40 | $\begin{aligned} & \mathrm{V} / 480 \mathrm{LL} \\ & \mathrm{I} / 480 \mathrm{TL} \end{aligned}$ | 267 | 215 | 180 | $\begin{aligned} & 125 \\ & 148 \end{aligned}$ | $\begin{array}{r} 87 \\ 114 \end{array}$ | $\begin{aligned} & 62 \\ & 90 \end{aligned}$ | 46 73 | 35 60 | 27 51 | 22 43 | 17 35 | 14 29 |
|  | NI-60 | $\begin{aligned} & 1 / 480 \mathrm{LL} \\ & \mathrm{l} / 480 \mathrm{TL} \\ & \hline \end{aligned}$ | 267 | 215 | 180 | 132 154 | 92 135 | 66 118 | 49 96 | 37 75 | 29 59 | 23 46 | 18 37 | 15 30 |
|  | NI-80 | $\begin{aligned} & 1 / 480 \mathrm{LL} \\ & \mathrm{l} / 480 \mathrm{TL} \\ & \hline \end{aligned}$ | 282 | 227 | 189 | 163 | $\begin{aligned} & 122 \\ & 143 \end{aligned}$ | $\begin{array}{r} 88 \\ 127 \\ \hline \end{array}$ | $\begin{array}{r} 66 \\ 114 \\ \hline \end{array}$ | $\begin{array}{r} 51 \\ 102 \\ \hline \end{array}$ | 39 79 | 31 <br> 63 | 25 51 | 21 42 |
|  | NI-90 | $\begin{aligned} & \mathrm{I} / 480 \mathrm{LL} \\ & \mathrm{l} / 480 \mathrm{TL} \end{aligned}$ | 326 | 262 | 219 | $\begin{aligned} & 187 \\ & 188 \end{aligned}$ | $\begin{aligned} & 132 \\ & 165 \\ & \hline \end{aligned}$ | $\begin{array}{r} 96 \\ 147 \end{array}$ | $\begin{array}{r} 72 \\ 132 \end{array}$ | $\begin{array}{r} 55 \\ 111 \end{array}$ | 43 87 | $\begin{aligned} & \hline 34 \\ & 69 \end{aligned}$ | 28 56 | 23 46 |
| 14" | NI-40 | $\begin{aligned} & \text { T/480 LL } \\ & \mathrm{I} / 480 \mathrm{TL} \\ & \hline \end{aligned}$ | 267 | 215 | 180 | 154 | $\begin{aligned} & 123 \\ & 135 \\ & \hline \end{aligned}$ | $\begin{array}{r} 89 \\ 109 \\ \hline \end{array}$ | 66 88 | 51 73 | 39 61 | 31 <br> 52 | 25 45 | 20 39 |
|  | NI-60 | $\begin{aligned} & \text { I/480 LL } \\ & \text { I/480 } \end{aligned}$ | 267 | 215 | 180 | 154 | $\begin{aligned} & 132 \\ & 135 \end{aligned}$ | 96 120 | 71 108 | 54 96 | 42 81 | 34 68 | 27 55 | 22 45 |
|  | NI-90 | $\begin{aligned} & \text { T/400 LL } \\ & \text { I/480 LL } \end{aligned}$ | 326 | 262 | 219 | 188 | ---7 | $\begin{aligned} & 136 \\ & 147 \end{aligned}$ | $\begin{aligned} & 102 \\ & 132 \end{aligned}$ | $\begin{array}{r} 79 \\ 120 \end{array}$ | 62 110 | 49 99 | 40 80 | 33 66 |
| 16" | NI-60 | $\begin{aligned} & 1 / 480 \mathrm{LL} \\ & \mathrm{I} / 480 \mathrm{TL} \\ & \hline \end{aligned}$ | 267 | 215 | 180 | 154 | 135 | 120 | 96 108 | 74 99 | 57 90 | 46 80 | 37 69 | 30 60 |
|  | NI-80 | $\begin{aligned} & \text { I/480 LL } \\ & \mathrm{I} / 480 \mathrm{TL} \end{aligned}$ | 322 | 259 | 216 | 186 | 163 | 145 | 126 130 | 97 119 | 76 109 | 61 100 | 49 93 | 41 82 |
|  | NI-90 | $\begin{aligned} & \text { I/480 LL } \\ & \mathrm{I} / 480 \mathrm{TL} \end{aligned}$ | 354 | 284 | 238 | 204 | 179 | 159 | $\begin{aligned} & 135 \\ & 144 \end{aligned}$ | $\begin{aligned} & 105 \\ & 131 \end{aligned}$ | 83 120 | 111 | 53 103 | 44 88 |

## Notes:

1. Table values are based on clear distance between supports and may be used for simple or multiple spans.

For multiple-span applications, the end spans shall be $40 \%$ or more of the adjacent span.
2. Tabulated loads are based on uniform loads only, and assume continuous lateral bracing of the compression flange.

Table values do not include additional stiffness from composite action with glue-nailed or nailed decking.
3 Both live and total loads must be checked. Where no value is shown in the live load row (LL), the total load governs the design.
For floor applications with $L / 360$ live load deflection, multiply $L / 480$ value times 1.33 . Total load deflection is limited to L/240.
4. Verify that the deflection criteria herein are accepted by local codes and authorities.
5. The l-joist weight has not been taken into account.
6. Minimum bearing length shall be $1-3 / 4$ inches for the end bearings, and $3-1 / 2$ inches for the intermediate bearings.
7. Bearing stiffeners are not required, except as required for hangers.
8. Refer to appropriate sections for proper installation.
9. For double joist, double the table values and connect joist per detail 1 p on page 19 of the Nordic catalog.

## TYPICAL FLOOR FRAMING AND CONSTRUCTION DETAILS

1. Except for cutting to length, I-joist flanges should never be cut, drilled or notched.
2. Install I-joists so that the top and bottom flanges are within $1 / 2$ " of true vertical alignment.
3. Concentrated loads should only be applied to the top surface of the top flange. At no time should concentrated loads be suspended from the bottom flange with the exception of light loads such as ceiling fans or light fixtures.
4. I-joists must be protected from the weather prior to installation.
5. I-joists must not be used in applications where they will be permanently exposed to weather, or will reach a moisture content greater than 16 percent, such as in swimming pool or hot tub areas. They must not be installed where they will remain in direct contact with concrete or masonry.
6. End bearing length must be at least $1-3 / 4$ ". For multiple-span joists, intermediate bearing length must be at least 3-1/2".
7. Ends of floor joists shall be restrained to prevent rollover. Use rim board or I-joist blocking panels.
8. I-joists installed beneath bearing walls perpendicular to the joists shall have full-depth blocking panels, rim board or squash blocks (cripple blocks) to transfer gravity loads from above the floor system to the wall or foundation below.
9. For I-joists installed directly beneath bearing walls parallel to the joists or used as rim board or blocking panels, the maximum allowable vertical load using a single I-joist is 2,000 plf, and 4,000 plf if double I-joists are used.

## I-JOIST

## FLOOR FRAMING \& CONSTRUCTION DETAILS

## COMMON CPI/N I JOIST FLOOR FRAMING

AND CONSTRUCTION DETAILS
Some framing requirements such as erection bracing and blocking panels have been omitted for clarity.


## WEB STIFFENER REQUIREMENTS

Web stiffeners are pairs of small blocks, typically cut from wood structural panels, that are nailed to the joist web to stiffen a deep web, increase reaction capacity or accommodate a special connector. Web stiffeners are not required when joists are sized by means of the tables included in this guide, with the following exceptions:

1. Web stiffeners are required at the ends of joists set in hangers that are not deep enough to laterally support the top flanges of the joists. Refer to the hanger manufacturer's installation instructions.
2. Web stiffeners are required to accommodate special connector nailing requirements. Refer to the connector manufacturer's installation instructions.
3. Web stiffeners are required at birdsmouth cuts at the low end supports of sloped joists.
4. Web stiffeners are required at all supports on 22 and 24 inch joists.

When joists are sized by means of sizing software, or otherwise engineered for an application, web stiffeners are required as follows:

1. Web stiffeners are required for high reactions at supports. Refer to ICC-ES ESR-1225.
2. Web stiffeners are required under concentrated loads applied to the tops of joists between supports, or along cantilevers beyond the support, when the concentrated load exceeds 1500 pounds.

## FIGURE B

WEB STIFFENER REQUIREMENTS

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| NUMBER OF WEB STIFFENER NAILS REQUIRED |  |  |  |
| Joist Depth | $24^{\prime \prime} \& 22^{\prime \prime}$ | $20^{\prime \prime} \& 18^{\prime \prime}$ | 16 " \& less |
| Intermediate Support | 10 | 8 | 4 |
| All Other Conditions | 8 | 6 | 4 |

WEB STIFFENER SIZE REQUIRED

| Series | Flange <br> Width | Minimum Dimensions |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Web Stiffeners |  | Nails |
|  |  | Thickness | Width |  |
| N I-40X | 2-1/2" | $1{ }^{\prime \prime}$ | 2-5/16" | 2-1/2" $\times 0.131^{\prime \prime}$ |
| N I-60 | 2-1/2" | $1{ }^{\prime \prime}$ | 2-1/2" | 2-1/2" $\times 0.131^{\prime \prime}$ |
| N I-80 | 3-1/2" | 1-1/2" | 3-1/2" | $3-1 / 2^{\prime \prime} \times 0.131^{\prime \prime}$ |
| NI/CPI-90 | 3-1/2" | 1-1/2" | 3-1/2" | $3-1 / 2^{\prime \prime} \times 0.131^{\prime \prime}$ |

Web stiffener length is approximately $1 / 8$ " less than the clear distance between flanges.


## I-JOIST <br> FLOOR FRAMING \& DETAILS

TYPICAL CPI/NI JOIST FLOOR FRAMING AND CONSTRUCTION DETAILS
All nails shown in the details below are assumed to be common nails unless otherwise noted. 10d box nails may be substituted for 8 d common shown in details. Individual components not shown to scale for clarity.


Vertical load transfer per pair of squash blocks as shown:

| Pair of Squash Blocks | (lb) |
| :--- | :---: |
| $2 \times 4$ | 4000 |
| $1-1 / 8$ " Rim Board | 3000 |
| 1" Rim Board | 2700 |

Solid block all posts from above to bearing below. Install squash blocks per 1d. Match bearing area of blocks below to post above.

VERTICAL LOAD CAPACITY

| Product (depths $=16^{\prime \prime}$ ) | Thickness | Vertical Load Capacity |
| :--- | :---: | :---: |
|  | $3 / 8^{\prime \prime}$ Web | 2000 plf |
|  | $7 / 16^{\prime \prime}$ Web | 2850 plf |
| APA Rim Board | $1-1 / 8^{\prime \prime}$ | 4400 plf |

## I-JOIST

## FLOOR FRAMING \& DETAILS



19
Load bearing wall above shall align vertically with the wall below. Other conditions such as offset walls are not covered by this detail.



* Minimum grade for backer block material shall be Utility grade SPF (south) or better for solid sawn lumber and Rated Sheathing grade for wood structural panels.
** For face-mount hangers use net CPI/NI joist depth minus 3-1/4" for joists with 1-1/2" thick flanges. For 1-5/16" thick flanges use depth minus 2-7/8".


## CPI/NI BLOCKING PANELS



CPI/NI blocking panels prevent CPI/NI floor joists from overturning and transfer loads through the floor system into the structure below.
Due to difference in depth and possible shrinkage, common framing lumber set on edge is unacceptable as blocking. CPI/Nl blocking panels must be cut to the proper length to between the CPI/ NI joists, and their depth must match the depth of the joists.
CPI/NI blocking panels may be used:

1. To stabilize CPI/Nl joists laterally at supports, as shown in Figures ia and lg. Lateral support is required during installation and is necessary to obtain design carrying capacity.
2. To transmit vertical loads up to 2,000 pf per CPI/NI blocking panel in accordance with Figures la, lc, if, and lg.
3. For closures such as that shown in Figures $1 a$ and $1 e$.
4. To transmit lateral forces to shear walls. Shear transfer nailing into the flanges must be specified by the building designer.
5. To provide lateral stability to walls.

Top-or-face mounted hanger installed per manufacturer's recommendations

Note: Unless hanger sides laterally support the top flange, web stiffeners shall be used. (See Figure B on page 7)

## I-JOIST

## CANTILEVERDETAILS



CANTILEVER DETAIL FOR VERTICAL BUILDING OFFSET


Method 1
SHEATHING REINFORCEMENT ONE SIDE
Rim board or wood structural panel closure ( $23 / 32^{\prime \prime}$ minimum thickness), attach per Detail 1b


Method 2
SHEATHING REINFORCEMENT TWO SIDES
Use same installation as Method 1 but reinforce both sides of $\mathrm{CPI} / \mathrm{NI}$ joist with sheathing or rim board.


Use nailing pattern shown for Method 1 with opposite face nailing offset by 3 "

Note: APA RATED SHEATHING $48 / 24$ (minimum thickness $23 / 32^{\prime \prime}$ ) required on sides of I-joist.Depth shall match the full height of the joist. Nail with 8d nails at 6" o.c., top and bottom flange. Install with face grain horizontal. Attach joist to plate at all supports per Detail 1b.

CANTILEVER DETAIL FOR VERTICAL BUILDING OFFSET

[^0]
## HOLE <br> SPECIFICATIONS

CPI／N I JOIST TYPICAL HOLES


ROUND AND RECTANGULAR HOLES

| Round Hole Diameter |  | 21 | $3{ }^{\prime \prime}$ | $4{ }^{11}$ | 5＂ | 6 ＂ | 6－1／4＂ | 8－5／8＂ | $10^{11}$ | 10－3／4＂ | $12^{11}$ | 12－3／4＂ | 14－3／4＂ | 16－3／4＂ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rectangular Hole Side |  | 1－1／2＂ | 2－1／4＂ | 3＂ | 3－3／4＂ | 4－1／2＂ | 4－1／2＂ | 6－1／4＂ | 7－1／2＂ | 8＂ | $9{ }^{\prime \prime}$ | 9－1／2＇ | $11^{\prime \prime}$ | 12－1／2＂ |
| Joist | Span | Minimum Distance＇D＇From Any Support to the Centerline of the Hole |  |  |  |  |  |  |  |  |  |  |  |  |
| 9－1／2＂ | 8 ft ． | 1＇－ $0^{\prime \prime}$ | $1^{\prime \prime}-6^{\prime \prime}$ | 2＇－1＇ | 2＇－7＂ | $3^{\prime \prime}-1$＂ | 3＇－3＂ |  |  |  |  |  |  |  |
|  | 12 ft ． | $1^{\prime \prime}-6^{\prime \prime}$ | 2＇－4＇ | 3＇－${ }^{\prime \prime}$ | 3＇－11＇ | 4＇－8＇ | 4＇－11＂ |  |  |  |  |  |  |  |
|  | 16 ft ． | 2＇－1＇ | 3＇－1＇ | 4＇－2＂ | 5＇－3＇ | 6＇－3＇ | 6＇－6＂ |  |  |  |  |  |  |  |
| 11－7／8＂ | 8 ft ． | $1^{\prime}-0^{\prime \prime}$ | $1^{\prime \prime}$－${ }^{\prime \prime}$ | 1＇－7＂ | $2^{\prime}-0^{\prime \prime}$ | 2＇－5＂ | $2^{\prime \prime}-6^{\prime \prime}$ | 3＇－7＂ |  |  |  |  |  |  |
|  | 12 ft ． | $1^{1}-0^{\prime \prime}$ | $1^{\prime \prime}-8^{\prime \prime}$ | 2＇－4＂ | 3＇－0＇ | 3＇－8＂ | 3＇－10＂ | 5＇－4＂ |  |  |  |  |  |  |
|  | 16 ft ． | 1＇－5＂ | 2＇－3＇ | 3＇－2＂ | 4＇－0＇ | 4＇－10＂ | 5＇－1＂ | 7＇－2＇ |  |  |  |  |  |  |
|  | 20 ft ． | 1＇－9＂ | 2＇－10＂ | 3＇－11＇ | 5＇－0＇ | 6＇－1＂ | 6＇－4＂ | 8＇－11＂ |  |  |  |  |  |  |
| 14＂ | 12 ft ． | 1＇－ 0 ＂ | $1^{\prime \prime}-1$＂ | 1＇－5＂ | $2^{\prime}-0^{\prime \prime}$ | 2＇－7＂ | 2＇－9＂ | 4＇－2＂ | 5＇－0＂ | 5＇－6＂ |  |  |  |  |
|  | 16 ft ． | $1^{\prime}-0^{\prime \prime}$ | 1＇－1＇ | 1＇－10＂ | 2＇－8＂ | 3＇－6＂ | 3＇－8＇ | 5＇－7＂ | 6＇－9＂ | 7＇－4＂ |  |  |  |  |
|  | 20 ft ． | $1^{\prime \prime}-0^{\prime \prime}$ | $1^{\prime}-4^{\prime \prime}$ | 2＇－4＂ | $3^{\prime}-4^{\prime \prime}$ | $4^{\prime}-4^{\prime \prime}$ | 4＇－7＂ | 7＇－0＇ | $8^{\prime}-5^{\prime \prime}$ | 9＇－2＂ |  |  |  |  |
|  | 24 ft ． | $1^{\prime}-0^{\prime \prime}$ | 1＇－7＂ | 2＇－10＂ | 4＇－0＂ | 5＇－3＂ | 5＇－7＂ | 8＇－5＂ | $10^{\prime}-1^{\prime \prime}$ | 11＇－0＂ |  |  |  |  |
| $16 "$ | 12 ft ． | $1^{1}-0^{\prime \prime}$ | $1^{\prime \prime}$－${ }^{\prime \prime}$ | $1^{1}-2^{\prime \prime}$ | $1^{\prime}-2^{\prime \prime}$ | $1^{\prime \prime}-4^{\prime \prime}$ | 1＇－6＂ | $2^{\prime}-11^{\prime \prime}$ | 3＇－9＂ | 4＇－3＂ | $5^{\prime}-0^{\prime \prime}$ | 5＇－6＂ |  |  |
|  | 16 ft ． | $1^{\prime}-0^{\prime \prime}$ | 1＇－1＂ | 1＇－2＂ | 1＇－2＇ | 1＇－10＂ | 2＇－0＂ | 3＇－11＂ | 5＇－1＂ | 5＇－8＂ | $6^{\prime}-8^{\prime \prime}$ | $7{ }^{\prime \prime}-4^{\prime \prime}$ |  |  |
|  | 20 ft ． | $1^{\prime}-0^{\prime \prime}$ | 1＇－1＂ | 1＇－2＂ | 1＇－3＇ | 2＇－3＂ | 2＇－6＂ | $4^{\prime}-11^{\prime \prime}$ | 6＇－4＂ | 7＇－1＇ | $8^{\prime}-5^{\prime \prime}$ | 9＇－2＂ |  |  |
|  | 24 ft ． | 1＇－0＂ | 1＇－1＂ | 1＇－2＂ | $1^{\prime}-6^{\prime \prime}$ | 2＇－9＇ | $3^{\prime \prime}-0^{\prime \prime}$ | $5^{\prime}-11^{\prime \prime}$ | 7＇－7＂ | $8^{\prime}-6^{\prime \prime}$ | 10＇－1＂ | $11^{\prime}-0^{\prime \prime}$ |  |  |
|  | 28 ft ． | $1^{\prime}-0^{\prime \prime}$ | 1＇－1＂ | 1＇－2＂ | 1＇－9＂ | 3＇－2＇ | 3＇－7＂ | 6＇－11＂ | 8＇－11＂ | 10＇－0＂ | 11＇－9＂ | 12＇－10＂ |  |  |



## GENERAL NOTES

1．Table values apply to joists sized by means of the load or span tables in this publication．Use beam sizing software for a more precise analysis or to analyze conditions outside of the scope of these tables．
2．Web holes may be located anywhere between the joist flanges． Leave at least $1 / 8$＂clearance between the edges of holes and the flanges．
3．Do not cut rectangular holes，or round holes larger than $1-1 / 2^{\prime \prime}$ diameter，in cantilevers．

4．The horizontal clearance between the edges of adjacent holes must be at least twice the diameter（or longest side） of the larger hole．Exception：A 1－1／2＂inch diameter hole may be drilled anywhere in the web．Provide at least $3^{\prime \prime}$ of horizontal clearance from adjacent holes of any size．
5．1－1／2＂diameter holes are factory－scored in the web at 16 ＂on center．

## SIMPSON

Strongstie
®
I-JOIST HANGER CHART

| I-JOIST SIZE | TOP MOUNT | FACE MOUNT | TOP MOUNT DOUBLE | FACE MOUNT DOUBLE |
| :---: | :---: | :---: | :---: | :---: |
| NI-40 9-1/2" | ITS25695 | IUS25695 | MIT3952 | MIU5129 |
| NI-40 11-7/8" | ITS2561188 | IUS2561188 | MIT311882 | MIU51211 |
| NI-60 11-7/8" | ITS2561188 | IUS2561188 | MIT311882 | MIU51211 |
| NI-60 14" | ITS25614 | IUS25614 |  | MIU51211 |
| NI-60 16" | ITS35616 | IUS35616 |  | MIU51216 |
| NI-80 9-1/2" | ITS35695 | IUS35695 | WPI495-2 |  |
| NI-80 11-7/8" | ITS3561188 | IUS3561188 | WP1411882 |  |
| NI-80 14" | ITS35614 | IUS35614 | WP14142 |  |
| NI-80 16" | ITS35616 | IUS35616 | WP14162 |  |
| NI-90 11-7/8" | ITS3561188 | IUS3561188 | WP1411882 |  |
| NI-90 14" | ITS35614 | IUS35614 | WP14142 |  |
| NI-90 16" | ITS35616 | IUS35616 | WP14162 |  |
| CPI-90 11-7/8" | ITS3561188 | IUS3561188 | WP1411882 |  |
| CPI-90 14" | ITS35614 | IUS35614 | WP14142 |  |
| CPI-90 16" | ITS35616 | IUS35616 | WP14162 |  |
| OPEN JOIST <br> TRI-FORCE | TOP MOUNT | FACE MOUNT | TOP MOUNT DOUBLE | FACE MOUNT DOUBLE |
| $11-7 / 8^{\prime \prime} \times 3^{\prime}-18^{\prime}$ | ITS2561188 | IUS2561188 | MIT311882 |  |
| $11-7 / 8{ }^{\prime \prime} \times 20^{\prime}-22$ | ITS3561188 | IUS3561188 | WP1411882 |  |
| $14^{\prime \prime} \times 3^{\prime}-18^{\prime}$ | ITS25614 | IUS25614 |  |  |
| 14" X 19'-24' | ITS35616 | IUS35614 | WP14142 |  |
| $16^{\prime \prime} \times 3^{\prime}-16^{\prime}$ | ITS25616 | IUS25616 |  |  |
| $16^{\prime \prime} \times 18^{\prime}-30^{\prime}$ | ITS35616 | IUS35616 | WP14162 |  |

All items in stock
For a complete list of all stocked Simpson Connectors, email us at plans@coastal.com

## I-JOIST <br> ROOF FRAMING \& CONSTRUCTION DETAILS

## COMMON CPI/N I-JOIST ROOF FRAMING AND CONSTRUCTION DETAILS



Optional overhangs

TYPICAL CPI/N I JOIST ROOF FRAMING AND CONSTRUCTION DETAILS
Individual components not shown to scale for clarity.

2a) RIDGE CONNECTION - 12/12 MAXIMUM SLOPE

(2c) CPI/N I JOIST ABOVE CP-LAM RIDGE BEAM


Uplift connections may be required.

2b UPPER END, BEARING ON WALL


2e CPI/N I JOIST ON BEVELED PLATE


2f BIRDSMOUTH CUT - LOW END OF CPI/N I JOIST ONLY


[^1]2d


Uplift connections may be required.

## I-JOIST <br> ROOF DETAILS

## COMMON CPI/N I-JOIST ROOF FRAMING AND CONSTRUCTION DETAILS

Individual components not shown to scale for clarity.

Uplift connections may be required
29
ROOF OPENING, FACE MOUNTED HANGER


2k OPTIONAL OVERHANG EXTENSIONS FOR
UNIFORMLY DISTRIBUTED LOADS ONLY
May be used with details 2d, $2 e$ and $2 f$ (Low end only)
Stop CPI/N I Joist at wall line and extend top flange with $2 \times 4$. Support extension with $2 \times 4$ nailed to web of joist with (2) rows of 8 d nails at 8 " o.c. clinched. Extend $2 \times 4$ support at least 4 ' into joist span and nail to top flange with 8 d nails at 8 "o.c.


Uplift connections may be required

## 2h BEVELED CUT BEARING STIFFENER



Uplift connections may be required


Uplift connections may be required

| Snow Load = 40 psf, Dead Load = 15 psf |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Joist Depth | Joist Series | Slope of 1/4: 12 to 4:12 On Centerspacing |  |  | Slope >4:12 to 8:12 On Centerspacing |  |  | Slope >8:12 to 12:12 On Centerspacing |  |  |
|  |  | $12^{\prime \prime}$ | $16^{\prime \prime}$ | 24" | $12^{\prime \prime}$ | $16^{\prime \prime}$ | $24{ }^{\prime \prime}$ | 12" | $16^{\prime \prime}$ | 24" |
| 9-1/2" | NI-20 | 18'-11" | 17'-1" | 14'-4" | 17'-11" | 16'-2" | 14'-1" | 16'-8" | 15'-1" | 13'-1" |
|  | NI-40X | 21'-7" | 18'-8" | 15'-3" | 20'-6" | 18'-4" | 14'-11" | 19'-1" | 17'-3" | 14'-6" |
|  | $\mathrm{NI}-60$ | 22'-1" | 20'-0" | 17'-4" | 20'-11" | 18'-11" | 16'-5" | 19'-6" | 17"-7" | 15'-4" |
|  | NI-70 | 24'-2" | 21'-10" | 19'-0" | 22'-11" | 20'-9" | 18'-0" | 21'-4" | 19'-4" | 16'-9" |
|  | $\mathrm{Nl}-80$ | 24'-8" | 22'-4" | 19'-4" | 23'-5" | 21'-2' | 18'-4" | 21'-9" | 19'-9" | 17'-1" |
| 11-7/8" | NI-20 | 22'-10" | 20'-1" | 16'-5" | 21'-7" | 19'-7" | 16'-1" | 20'1" | 18'-3" | 15'-8" |
|  | NI-40X | 24'-8" | 21'-4" | 17'-4" | 24'-2" | 20'-11" | 17'-0" | 22'-10" | 20'4" | $16^{\prime \prime} \mathbf{7}^{\prime \prime}$ |
|  | NI-60 | 26'-6" | 24'-0" | 19'-11" | 25'-1" | 22"-8" | 19'-6" | 23'-4" | 21'-2" | 18'-4" |
|  | NI-70 | 28'-11" | 26'-2" | 22'-8" | 27'-4" | 24'-9" | 21'-6" | 25'-6" | 23'-1" | 20'-1" |
|  | $\mathrm{Nl}-80$ | 29'-6" | 26'-8" | 23'-2" | 27'-11" | 25'-3" | 21'-11" | 26'-0" | 23'-7" | 20'-5" |
|  | $\mathrm{Nl}-90$ | 32'-5" | 27'-6" | 23'-10" | 28'-9" | 26'-1" | 22'-7" | 26'-10" | 24'-4" | 21-1" |
| 14" | NI-40X | 27'-1" | 23'-5" | 19'-1" | 26'-7" | 23'-0" | 18'-8" | 25'-10" | 22'-4" | 18'-2" |
|  | NI-60 | 30'-2" | 26'-10" | 21'-11" | 28'-7" | 25'-11" | 21'-6" | 26'-8" | 24'-1" | 20'-11" |
|  | NI-70 | 32'-10" | 29'-8" | 25'-5" | 31'-0" | 28'-1" | 24'-5" | 28'-11" | 26'-2" | 22'-9" |
|  | $\mathrm{NI}-80$ | 33'-7" | 30'-4" | 26'-1" | 31'-9" | 28'-9" | 24'-11" | 29'-7" | 26'-10" | 23'-3" |
|  | Nl -90 | 34'-7" | 31'-3" | 27'-1" | 32'-8" | 29'-7" | 25'-8" | 30'-6" | 27'-7" | 24'-0" |
| $16 "$ | NI-60 | 33'-6" | 28'-11" | 23'-7" | 31'-9" | 28'-5" | 23'-2" | 29'-7" | 26'-10" | 22'-6" |
|  | $\mathrm{NI}-70$ | 36'-4" | 32'-11" | 26'-11" | $34^{\prime}-5^{\prime \prime}$ | 31'-2"' | 26'-10" | 32'-1" | 29'-0" | 25'-3" |
|  | $\mathrm{Nl}-80$ | 37'-3" | 33'-8" | 28'-1" | 35'-3" | 31'-11" | 27'-7" | 32'-10" | 29'-9" | 25'-10" |
|  | $\mathrm{Nl}-90$ | 38'-8" | 34'-8" | 30'-1" | 36'-3" | 32'-10" | 28'-6" | 33'-9" | 30'-7" | 26'-7" |

NOTES:

1. Allowable clear span applicable to simple-span roof construction with a design roof snow load as shown and dead load of 15 psf . The allowable span is based on the horizontal distance between inside face of supports. The snow load deflection is limited to L/240 and the total load deflection to L/180. Spans are based on a duration of load (DOL) factor of 1.15 .
2. Spans include a cantilever of up to 2 feet on one end of the I-joist.
3. Minimum bearing length shall be $1-3 / 4$ " inches for the end bearings, and $3-1 / 2$ " inches on end bearing adjacent to cantilever.
4. Bearing stiffeners are not required when I-joists are used with the spans and spacings given in these tables, except as required for hangers.
5. These span charts are based on uniform loads.

For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties.
SI units conversion: 1 inch $=25.4 \mathrm{~mm}, 1 \mathrm{foot}=0.305 \mathrm{~m}$

| CPI | CPI | Slope of 4/12 or Less |  |  | Slopes over 4/12 up to 8/12 |  |  | Slopes over 8/12 up to 12/12 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Joist Series | Joist Depth | 16"O.C. | 19.2"O.C. | 24"O.C. | 16"O.C. | 19.2"O.C. | 24" O.C. | 16"O.C. | 19.2"O.C. | 24"O.C. |
| CPI 20 | 9-1/2" | 16'-0" | 14'-7" | 11'-7" | 15'-5" | 14'-1" | 11'-3" | 14'-4" | 13'-6" | 10'-9" |
|  | 11-7/8" | 17'-7" | 14'-7" | 11'-7" | 17'-0" | 14'-1" | 11'-3" | 16'-3" | 13'-6" | 10'-9" |
| CPI 30 | 9-1/2" | 16'-9" | 15'-8" | 13'-1" | 15'-11" | 14'-11" | 12'-7" | 14'-11" | 14'-0" | 12'-1" |
|  | 11-7/8" | 19'-9" | 16'-5" | 13'-1" | 19'-1" | 15'-10" | 12'-7" | 17'-11" | 15'-1" | 12'-1" |
| CPI 40 | 9-1/2" | 16'-8" | 15'-2" | 13'-7" | 16'-5" | 14'-11" | 13'-4" | 15'-10" | 14'-7" | 13'-0" |
|  | 11-7/8" | 19'-0" | 17'-4" | 15'-6" | 18'-8" | 17'-1" | 15'-3" | 18'-3" | 16'-8" | 14'-10" |
|  | $14^{\prime \prime}$ | 20'-11" | 19'-1" | 17'-0" | 20'-7" | 18'-9" | 16'-8" | 20'-1" | 18'-4" | 15'-11" |
|  | $16 "$ | 22'-6" | 20'-6" | 17'-3" | 22'-2" | 20'-2" | 16'-8" | 21'-8" | 19'-9" | 15'-11" |
| CPI 50 | 9-1/2" | 17'-6" | 16'-5" | 14'-0" | 16'-8" | 15'-8" | 13'-6" | 15'-7" | 14'-8" | 12'-11" |
|  | 11-7/8" | 21'-1" | 17'-7" | 14'-0" | 20'-1" | 17'-0" | 13'-6" | 18-10" | 16'-3" | 12'-11" |
|  | $14{ }^{\prime \prime}$ | 21'-2" | 17'-7" | 14'-0" | 20'-5" | 17'-0" | 13'-6" | 19'-6" | 16'-3" | 12'-11" |
|  | 16 " | 21'-2" | 17'-7" | 14'-0" | 20'-5" | 17'-0" | 13'-6" | 19'-6" | 16'-3" | 12'-11" |
| CPI 60 | 9-1/2" | 18'-10" | 17'-8" | 14'-10" | 17'-11" | 16'-10" | 14'-4" | 16'-9" | 15'-9" | 13'-8" |
|  | 11-7/8" | 22'-5" | 20'-5" | 17'-3" | 21'-6" | 20'-1" | 16'-8" | 20'-2" | 18'-11" | 15'-11" |
|  | 14 | 24'-7" | 21'-7" | 17'-3" | 24'-2" | 20'-10" | 16'-8" | 22'-11" | 19'-11" | 15'-11" |
|  | $16^{\prime \prime}$ | 25'-11" | 21'-7" | 17'-3" | 25'-1" | 20'-10" | 16'-8" | 24'-0" | 19'-11" | 15'-11" |
| CPI 70 | 11-7/8" | 23'-5" | 20'-2" | 16'-1" | 22'-4" | 19'-6" | 15'-6" | 20'-10" | 18'-7" | 14'-10" |
|  | $14 "$ | 24'-3" | 20'-2" | 16'-1" | 23'-5" | 19'-6" | 15'-6" | 22'-4" | 18'-7" | 14'-10" |
|  | 16 " | 24'-3" | 20'-2" | 16'-1" | 23'-5" | 19'-6" | 15'-6" | 22'-4" | 18'-7" | 14'-10" |
| CPI 90 | 9-1/2" | 22'-6" | 21'-1" | 19'-6" | 21'-5" | 20'-1" | 18'-7" | 20'-0" | 18'-10" | 17'-5" |
|  | 11-7/8" | 26'-10" | 25'-2" | 23'-2" | 25'-7" | 24'-0" | 22'-2" | 23'-11" | 22'-5" | 20'-9" |
|  | 14 " | 30'-5" | 28'-7" | 23'-2" | 29'-0" | 27'-3" | 22'-5" | 27'-2" | 25'-6" | 21'-5" |
|  | 16 " | 33'-9" | 29'-1" | 23'-2" | 32'-2" | 28'-1" | 22'-5" | 30'-1" | 26'-10" | 21'-5" |

3. Live load deflection is limited to $\mathrm{L} / 240$. Total load deflection is limited to $L / 180$. Verify that the deflection criteria conform to local building code requirements.
4. Table values are based on $1-3 / 4$ " end and $3-1 / 2^{\prime \prime}$ intermediate bearing lengths without web stiffeners.

NOTES:

1. Table values apply to uniformly loaded simple or multiple span CPI joists. Span is the horizontal distance from face to face of supports. Use beam sizing software to analyze multiple span joists if the length of any span is less than half the length of an adjacent span.
2. Roofs must be sloped at least $1 / 4$ " in 12 " to
assure drainage.

Engineered Rim Board is a structural framing member designed to support wall loads and tie floor joists together.

Engineered Rim Board must be continuously supported along the bottom edge and not used to span openings. It may not be used as other structural framing elements such as joists, rafters, headers and ledgers.

## ADVANTAGES

- No delamination
- Manufactured to match the depths of I-joist framing members
- Resistant to moisture
- Dimensionally stable
- 12 foot standard


## PERFORMANCE CRITERIA

Norbord Rim Board is manufactured in accordance with ICBO AC-124 Acceptance Criteria for Wood-Based Rim Board Products.

## STORAGE AND HANDLING

Ship Rim Board under tarp. Set bundles on supports to keep Rim Board off the ground and provide air circulation. Outdoors, keep Rim Board under a protective cover. When high moisture exists, cut banding on the stack to prevent edge damage. When using a forklift, put the stack on a pallet or supports to minimize damage from forks.


## THE OPEN JOIST

## The Barrette ${ }^{\circledR}$ Structural Open Concept Floor System

 The strength of triangulation，accuracy of finger－jointed assembly，maximation of dimensional lumber and environmentally－friendly field adjustability makes Open Joist TRIFORCE ${ }^{\oplus}$ the only trimmable，all wood， open－webbed，finger－jointed floor joist installed without metal plate connectors．Reengineering wood components for your needs For more than 25 years，our finger joint technology has demonstrated its strength and durability throughout North America．The open joist TRIFORCE ${ }^{\oplus}$ has surpassed industry standards by establishing a new level of excellence in the engineering of floor systems，while optimizing the use of lumber in its components．


## Maximum Allowable Floor Spans for Residential Application

| $\cdots$ |  | Subfloor-CSP |  |  | 5/8 ${ }^{\text {"1 }}$ | 5/8" | 5/8'1 | 3/4" |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Depth (in) | Series | Chords | Weight (PLF) | Maximum Spans O.c. |  |  |  |
|  | 11-7/8" | OJ314 | 2"x ${ }^{\prime \prime}$ | 2.80 | 16'-0" | 16'-0" | 16'-0" | 14'-10" |
| 4 |  | OJ315 | $2 " \times 3$ " | 2.80 | 18'-0" | 18'-0" | 17'-9" | 16'-3" |
| - |  | OJ415 | 2"x4" | 3.35 | 20'-0" | 20'-0" | 19'-9" | 18'-4" |
|  |  | OJ418 | 2"x4" | 3.35 | 22'-0" | 22'-0" | 20'-9" | - |
| $\cdots$ | 14" | OJ314 | 2"x ${ }^{\prime \prime}$ | 2.85 | 16'-0" | 16'-0" | 16'-0" | 16'-0" |
|  |  | OJ415 | 2"x 4 " | 2.85 | 20'-0" | 20'-0" | 20'-0" | - |
| $\cdots$ |  | OJ415 | 2"x4" | 3.45 | 22'-0" | 22'-0" | 22'-0" | 20'-11' |
| 0 |  | OJ418 | 2"x4" | 3.45 | 26'-0" | 25'-0" | 23'-7" | - |
| O | 16" | OJ314 | 2"x3" | 2.95 | 16'-0" | $16^{\prime}-0{ }^{\prime \prime}$ | 16'-0" | 16'-0" |
|  |  | OJ315 | $2 \mathrm{~L} \times 3$ " | 2.95 | 20'-0" | 20'-0" | 20'-0" | 19'-3" |
| - |  | OJ418 | 2"x4" | 3.55 | 26'-0" | 26'-0" | 26'-0" | 24'-2" |
|  |  | OJ420 | 2"x4" | 3.55 | 30'-0" | 28'-6" | 26'-10" | - |

## Maximum Allowed <br> Unfactored Live Load Chart for Residential Application

| Dead Load: 15 PSF, L/360, Glued and Nailed |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Length | $\begin{aligned} & 11-7 / 8^{\prime \prime} \\ & \text { Loads PSF } \end{aligned}$ |  |  |  | $\begin{gathered} 14^{\prime \prime} \\ \text { Loads PSF } \end{gathered}$ |  |  |  | $\begin{gathered} 16^{\prime \prime \prime} \\ \text { Loads PSF } \end{gathered}$ |  |  |  |
|  | 12" | 16 " | 19.2" | 24" | 12" | $16^{\prime \prime}$ | 19.2" | 24" | 12" | 16" | 19.2" | 24" |
| 8'-0" | 314 | 232 | 191 | 149 | 319 | 236 | 194 | 152 | 324 | 239 | 197 | 154 |
| 10'-0" | 233 | 171 | 140 | 109 | 252 | 185 | 152 | 118 | 256 | 188 | 154 | 120 |
| 12'-0' | 157 | 114 | 92 | 71 | 191 | 139 | 113 | 88 | 211 | 154 | 126 | 98 |
| $14^{\prime}-0^{\prime \prime}$ |  | 79 | 63 | 48 | 136 | 98 | 79 | 60 | 156 | 113 | 92 | 70 |
| 16'-0" | 81 | 57 | 45 | ------ | 100 | 71 | 57 | 42 | 116 | 83 | 66 | 50 |
| $18^{\prime}-0^{\prime \prime}$ | 76 | 53 | 42 | ---- | 95 | 68 | 54 | 40 | 113 | 81 | 65 | 49 |
| 20'-0" | 81 | 62 | 51 | ------- | 74 | 52 | 40 | ------ | 88 | 62 | 49 | ------- |
| $22^{\prime}-0^{\prime \prime}$ | 71 | 54 | 46 | ------ | 80 | 63 | 50 | ------ | 108 | 77 | 62 | 46 |
| $24^{-010}$ |  |  |  |  | 79 | 61 | 51 | ------ | 98 | 69 | 55 | 41 |
| 26'-0" |  |  |  |  | 63 | 48 | ----- | ---- | 83 | 63 | 50 | ------ |
| 28'-0" |  |  |  |  |  |  |  |  | 74 | 57 | 45 | ---- |
| $30^{\prime}-0^{\prime \prime}$ |  |  |  |  |  |  |  |  | 61 | 47 | ------ | ------ |

## Mid Span Continuous

## Strongback Recommendations

| $\mathrm{LL}=40$ PSF DL = 15 PSF |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Length | 11-7/8" |  |  |  | $14^{\prime \prime}$ |  |  |  | $16^{\prime \prime}$ |  |  |  |
| Spacing o.c. | 12 | $16^{11}$ | 19.2" | $24^{\prime \prime}$ | 12" | $16^{\prime \prime}$ | 19.2" | 24" | $12^{\prime \prime}$ | $16^{11}$ | 19.2" | $24^{\prime \prime}$ |
| $14^{\prime}-0^{\prime \prime}$ | None |
| 16'-0" | None | 1-2x4 | 1-2x4 | None |
| 18'-0" | 1-2x4 | 1-2x6 | 1-2x6 | 1-2x6 | None | 1-2x6 | 1-2x6 | 1-2x6 | None | None | 1-2x6 | 1-2x6 |
| 20'-0' | 2-2x4 | 1-2x6 | 2-2x6 | 1-2x8 | 1-2x6 | 1-2x6 | 1-2x6 | ------ | 1-2x6 | 1-2x6 | 1-2x6 | 1-2x6 |
| 22'-0" | 1-2x6 | 2-2x6 | 1-2x8 | 2-2x8 | 1-2x6 | 1-2x6 | 2-2x6 | 2-2x6 | None | 1-2x6 | 1-2x6 | 1-2x6 |
| 24'-0" | ------ | ------ | ------ | ------ | 1-2x6 | 2-2x6 | 2-2x8 | 2-2x8 | 1-2x6 | 1-2x6 | 2-2x6 | 2-2x6 |
| 26'-0" | ------ | ------ | ------ | ------ | 2-2x6 | 2-2x8 | 2-2x10 | 2-2x8 | 1-2x6 | 2-2x6 | 1-2x8 | 1-2x8 |
| 28'-0" | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | 2-2x6 | 2-2x8 | 2-2x8 | ------ |
| 30'-0' | -- | ------ | ------ | ------ | ------ | ------ | ------ | ------ | 2-2x8 | 2-2x10 | $2-2 \times 10$ | ---- |

Notes:

1. Spans apply to simple span application only 2. Minimum end bearing length is $1-1 / 2^{\prime \prime}$, except for bold spans minimum 1-1/2" at the OSB section with web stiffeners
2. Maximum spans are measured centerline to centerline of bearing and are based on uniformly loaded joists.
3. Dead load deflection is limited to L /240 and total load deflection is limited L/240 5. Live load is limited to $\mathrm{L} / 480$.
4. The spans shown consider a minimum $5 / 8$ "thick rated sheathing nailed and glued to joist in accordance with the applicable code or a $3 / 4$ "at $24^{\prime \prime}$ O.C.
5. Allowable spans take into consideration the composite effect from glued and nailed subfloor for deflections.
6. Refer to appropriate sections of the Specifier Guide for installation guide lines and construction details.
7. The nailing specifications are to be in accordance with in force building code and the adhesives used should comply with APA Specification AFG-01 or ASTM D3498.

## Notes:

1. Uniform loads shown are for full span (bearing included). Higher loads could be applied using longer end bearing length.
2. Minimum end bearing length is $1-1 / 2$ ", except for bold loads, minimum 1-1/2" with web stiffeners at the OSB section
3. Dead load deflection is limited to L /240 and total load deflection is limited to L/240 4. Live load deflection is limited to $L / 360$.
5.Refer to appropriate sections of the Specifier Guide for installation guidelines and construction details.
4. The nailing specifications are to be in accordance with in force building code and the adhesives used should comply with APA Specification AFG-01 or ASTM D3498

## Notes:

1. Specified continuous strongbacks installed at mid span shown, take into consideration a performance criterion.
2. Refer to appropriate sections of the Specifier Guide for installation guidelines and construction details.
3. Live load deflection is limited to L/360
4. This table of continuous strongback for maximum spans can also be used for maximum spans when the live load deflection is limited L 480 .

## OPEN JOIST FLOORDETAILS

## Mechanical Clearances

| Mechanical Opening Dimension |  |  |  |
| :---: | :---: | :---: | :---: |
| Depth | Round | Square | Rectangular |
| 11-7/8" | $71 / 4 "$ | $53 / 4 " \times 53 / 4 "$ | 3" $\times 13$ " |
| $14^{\prime \prime}$ | $81 / 2^{\prime \prime}$ | $61 / 22^{\prime \prime} \times 1 / 2^{\prime \prime}$ | $3^{\prime \prime} \times 14$ ", 6" $\times 8$ " |
| $16^{\prime \prime}$ | $91 / 2 "$ | $71 / 2^{\prime \prime} \times 71 / 2^{\prime \prime}$ | 3" $\times 15$ " |

Possibility of round hole at $41 / 2^{\prime \prime}$ o.c. of joist extremity. Contact your TRIFORCE ${ }^{\oplus}$ representative for more details.

## Typical Details



Detail 3P2B
End To End Joist


## Detail 5

Continuous Strongback


Option \#1 (suggested) Secure vertical ( $2 \times 4$ ) with 2 nails* to both chords and strongback to vertical with 2 nails*.
*(gun nails $0.122^{\prime \prime} \times 31 / 4^{\prime \prime}$ )


Option \#2
Secure strongback with 2 nails* through the bottom chord and 1 nail* through the diagonal web. *(gun nails $0.122^{\prime \prime} \times 31 / 4^{\prime \prime}$ )

Detail 2
Bearing Wall


## Detail 4P1

Joist To Beam With Hanger


## Detail 6M

Knee Wall


Detail 11VS
Reinforcement Under Concentrated Load


* PL Premium Adhesive

Detail 12P
Cantilevered


## Detail 15ETP

Steel Beam With Solid Wood Filler


## STRONGBACKS <br> DETAILS

Strongbacks must be dry lumber and secured with 2 spiral or resined 3 " nails or 2-3" screws at mid-span, to a vertical brace or diagonal web.

Strongbacks can be cut between 2 joists for ducts, pipes and wires if needed, but at least 3 consecutive joists must remain attached together.
$11-7 / 8^{\prime \prime}=2 \times 4$ " or $2 \times 6^{\prime \prime}$
$14^{\prime \prime}=2 \times 6$ " or $2 \times 8^{\prime \prime}$
16 " $=2 \times 6$ ", $2 \times 8$ " or $2 \times 10$ "


## Detail 5

Strongback (at mid span)

## Option \#1 (recommanded)



Secure vertical side block ( $2 \times 4$ ) as per detail, with 2 nails* to both chords and strongback to vertical with 2 nails*. *(gun nails $0.122^{\prime \prime} \times 3$ ¹⁄4")

Adding adhesive will provide an ultimate connection for high floor performance. Gun nails can be substituted with 3" screws.

## Option \#2

2x3 flanges: $1-3^{\prime \prime}$ (10d) through bottom flange and $1-3^{\prime \prime}$ (10d) through the diagonal, adding adhesive will insure long term performance


2x4 flanges: 2-3" (10d) through bottom flange and 1-3" (10d) through the diagonal.

Adding adhesive will ensure long term performance. Gun nails can be substituted with 3 " screws.

## Strongback Overlap



ALLOWABLE DESIGN PROPERTIES - 1 3/4" 2.1E CP-LAM

| Depth | Maximum Vertical Shear (lbs) |  |  | Maximum Bending Moment (ft-lbs) |  |  | $\begin{gathered} \mathrm{El} \\ \left(\times 10^{6} \mathrm{lbs}-\mathrm{in}^{2}\right) \end{gathered}$ | Weight (plf) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100\% | 115\% | 125\% | 100\% | 115\% | 125\% |  |  |
| 5-1/2" | 1829 | 2103 | 2286 | 2664 | 3064 | 3330 | 49 | 2.50 |
| 7-1/4" | 2411 | 2772 | 3013 | 4380 | 5037 | 5475 | 111 | 3.30 |
| 9-1/4" \& 9-1/2" | 3159 | 3633 | 3948 | 7125 | 8194 | 8907 | 250 | 4.32 |
| 11-1/4" \& 11-7/8" | 3948 | 4541 | 4936 | 10647 | 12245 | 13309 | 488 | 5.40 |
| 14" | 4655 | 5353 | 5819 | 14320 | 16468 | 17900 | 800 | 6.36 |
| 16" | 5320 | 6118 | 6650 | 18210 | 20942 | 22763 | 1195 | 7.27 |
| 18" | 5985 | 6883 | 7481 | 22511 | 25888 | 28139 | 1701 | 8.18 |
| 20" | 6650 | 7648 | 8313 | 27212 | 31294 | 34015 | 2333 | 9.1 |
| 23-7/8" | 7938 | 9129 | 9923 | 37428 | 43043 | 46786 | 4032 | 10.85 |

$\square$ Stocked Items
2.1E CP-LAM Allowable Design Stresses ${ }^{(1)}$

Modulus of Elasticity
Bending
Horizontal Shear (joist)
Compression Perpendicular to Grain (joist)

| E | $=2,100,000 \mathrm{psi}^{(2)}$ |
| ---: | :--- |
| Fb | $=3,100 \mathrm{psi}^{(3)(4)}$ |
| $\mathrm{Fv}_{\mathrm{v}}$ | $=285 \mathrm{psi}$ |
| $\mathrm{Fc}_{1}$ | $=850 \mathrm{psi}^{(2)}$ |
| $\mathrm{Fc}_{\mathrm{c}}$ | $=2,750 \mathrm{psi}$ |

1. These allowable design stresses apply to dry service conditions.
2. No increase is allowed for load duration.
3. Multiply by $(12 / \mathrm{d})^{1 / 5}$ where $\mathrm{d}=$ depth of member (in).

4. A factor of 1.04 may be applied for repetitive members as defined in the National Design Specification* for Wood Construction

FOR ADDITIONAL GRADES AND SIZES PLEASE VISIT OUR WEBSITE AT WWW.COASTALFP.COM

### 2.1ECP - LAM FLOOR BEAMS

This table provides CP-LAM beam sizes for center support of one level of floor framing over various column spacings. Where floor joists are continuous over the beam, this table applies only when the ' $A$ ' span is between $45 \%$ and $55 \%$ of the building width.


| Width of Building (ft) | Column Spacing |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 11' | 12' | 13' | 14' | 15' | 16' | 17' | 18' | 19' | 20' |
| 24' | 2-11-7/8" | 2-11-7/8" | 2-11-7/8" | 2-14" | 2-14" | $2-16{ }^{\prime \prime}$ | 2-16" | 2-16" | 2-18" | 2-18" |
|  | 3-9-1/2" | 3-9-1/2" | 3-11-7/8" | 3-11-7/8" | 3-11-7/8" |  |  |  |  |  |
| 28' | 2-11-7/8" | 2-11-7/8" | 2-14" | 2-14" | 2-14" | 2-16" | 2-16" | 2-18" | 2-18" | - |
|  | 3-9-1/2" | 3-11-7/8" | 3-11-7/8" | 3-11-7/8" | 3-14" | 3-14" | 3-14" | 3-16" | 3-16" | 3-18" |
| 32' | 2-11-7/8" | 2-11-7/8" | 2-14" | 2-14" | 2-16" | 2-16" | 2-18" | 2-18" | - | - |
|  | 3-9-1/2" | 3-11-7/8" | 3-11-7/8" | 3-14" | 3-14" | 3-14" | 3-16" | 3-16" | 3-18" | 3-18" |
| 36' | 2-11-7/8" | 2-14" | 2-14" | 2-16" | 2-16" | 2-18" | 2-18" | - | - | - |
|  | 3-11-7/8" | 3-11-7/8" | 3-11-7/8" | 3-14" | 3-14" | 3-16" | 3-16" | 3-16" | 3-18" | 3-18" |
| $40^{\prime}$ | 2-11-7/8" | 2-14" | 2-14" | 2-16" | 2-16" | 2-18" | - | - | - | - |
|  | 3-11-7/8" | 3-11-7/8" | 3-14" | 3-14" | 3-14" | 3-16" | 3-16" | 3-18" | 3-18" | - |

## Notes:

1. CP-LAM beam sizes are listed as the number of $1-3 / 4^{\prime \prime}$ thick pieces by the beam depth, e.g. $2-1 / 2$ indicates two $1-3 / 4$ " pieces by $9-1 / 2^{\prime \prime}$ deep.
2. All CP-LAM beams require support across their full width.
3. The minimum required end and intermediate bearing lengths (based on 850 psi) are $3^{\prime \prime}$ and $7-1 / 2^{\prime \prime}$ respectively unless the + symbol is shown. In that case, 4-1/2" and 10-1/2" end and intermediate bearing lengths are required.
4. CP-LAM beam sizes are based on residential floor loading of 40 psf live load and 10 psf dead load. The roof framing must be trusses supported at the exterior walls only.
5. Defection is limited to $L / 360$ at live load and $L / 240$ at total load.
6. CP-LAM beam sizes are based on continuous floor joist spans and simple or continuous beam spans. If the floor joists are not continuous, it is permissible to consider a "Width of Building" dimension that is equal to 0.8 times the actual width of the building.

### 2.1E CP-LAM

## ALLOWABLE UNIFORM LOADS FLOOR 100\%

ALLOWABLE UNIFORM LOADS* - POUNDS PER LINEAR FOOT - 1-3/4" 2.1E CP-LAM

| Span (ft) | Key | One 1-3/4" CP-LAM |  |  | Two 1-3/4"CP-LAM |  |  |  |  | Three 1-3/4"CP-LAM |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 9-1/2" | 11-7/8" | $14^{\prime \prime}$ | 9-1/2" | 11-7/8" | 14" | 16" | 18" | 9-1/2" | 11-7/8" | $14^{\prime \prime}$ | 16" | 18" |
| 6 | LL | - | - | - | - | - | - | - | - | - | - | - | - | - |
|  | TL | 1063 | 1425 | 1796 | 2127 | 2850 | 3591 | 4388 | 5304 | 3190 | 4275 | 5387 | 6582 | 7955 |
|  | BRG | 2.2/5.4 | 2.9/7.2 | 3.6/9.1 | 2.2/5.4 | 2.9/7.2 | 3.6/9.1 | 4.4/11.1 | 5.4/13.4 | 2.2/5.4 | 2.9/7.2 | 3.6/9.1 | 4.4/11.1 | 5.4/13/4 |
| 8 | LL | 724 | - | - | 1447 | - | - | - |  | 2171 | - |  |  |  |
|  | TL | 746 | 979 | 1208 | 1493 | 1958 | 2416 | 2887 | 3404 | 2239 | 2937 | 3624 | 4331 | 5105 |
|  | BRG | 2/5 | 2.6/6.6 | 3.3/8.2 | 2/5 | 2.6/6.6 | 3.3/8.2 | 3.9/8.8 | 4.6/11.5 | 2/5 | 2.6/6.6 | 3.3/8.2 | 3.9/9.8 | 4.6/11.5 |
| 10 | LL | 370 | 724 | - | 741 | 1447 | - | - | - | 1111 | 2171 | - |  | - |
|  | TL | 551 | 745 | 909 | 1103 | 1490 | 1819 | 2150 | 2504 | 1654 | 2236 | 2728 | 3224 | 3755 |
|  | BRG | 1.9/4.7 | 2.5/6.3 | 3.1/7.7 | 1.9/4.7 | 2.5/6.3 | 3.1/7.7 | 3.6/9.1 | 4.2/10.6 | 1.9/4.7 | 2.5/6.3 | 3.1/7.7 | 3.6/9.1 | 4.2/10.6 |
| 11 | LL | 278 | 544 | - | 557 | 1087 | - | - | - | 835 | 1631 | - | - | - |
|  | TL | 413 | 665 | 809 | 826 | 1331 | 1618 | 1905 | 2211 | 1240 | 1996 | 2427 | 2858 | 3316 |
|  | BRG | 1.5/3.9 | 2.5/6.2 | 3/7.5 | 1.5/3.9 | 2.5/6.2 | 3/7.5 | 3.5/8.9 | 4.1/10.3 | 1.5/3.9 | 2.5/6.2 | 3/7.5 | 3.5/8.9 | 4.1/10.3 |
| 12 | LL | 214 | 419 | 686 | 429 | 837 | 1372 | - | - | 643 | 1256 | 2058 | - | - |
|  | TL | 317 | 586 | 729 | 635 | 1172 | 1452 | 1711 | 1979 | 952 | 1758 | 2186 | 2566 | 2968 |
|  | BRG | 1.5/3.2 | 2.4/6 | 3/7.4 | 1.5/3.2 | 2.4/6 | 3/7.4 | 3.5/8.7 | 4/10.1 | 1.5/3.2 | 2.4/6 | 3/7.4 | 3.5/8.7 | 4/10.1 |
| 13 | LL | 169 | 329 | 540 | 337 | 659 | 1079 | - | - | 506 | 988 | 1619 | - | - |
|  | TL | 249 | 489 | 663 | 497 | 977 | 1325 | 1552 | 1790 | 746 | 1466 | 1988 | 2328 | 2686 |
|  | BRG | 1.5/3 | 2.2/5.4 | 2./9/7.3 | 1.5/3 | 2.2/5.4 | 2.977.3 | 3.4/8.6 | 3.9/9.9 | 1.5/3 | 2.2/5.4 | 2.9/7.3 | 3.4/8.6 | 3.9/9.9 |
| 14 | LL | 135 | 264 | 432 | 270 | 527 | 864 | 1290 |  | 405 | 791 | 1296 | 1935 |  |
|  | TL | 198 | 390 | 578 | 396 | 780 | 1156 | 1420 | 1635 | 595 | 1170 | 1734 | 2130 | 2452 |
|  | BRG | 1.5/3 | 1.9/4.7 | 2.8/6.9 | 1.5/3 | 1,9/4.7 | 2.8/6.9 | 3.4/8.4 | 3.9/9.7 | 1.5/3 | 19/4.7 | 2.8/6.9 | 3.4/8.4 | 3.9/9.7 |
| 15 | LL | 110 | 214 | 351 | 220 | 429 | 703 | 1049 | 1493 | 329 | 643 | 1054 | 1573 | 2240 |
|  | TL | 160 | 316 | 503 | 321 | 632 | 1006 | 1280 | 1504 | 481 | 949 | 1508 | 1921 | 2255 |
|  | BRG | 1.5/3 | 1.6/4.1 | 2.6/6.4 | 1.5/3 | 1.6/4.1 | 2.6/6.4 | 3.3/8.2 | 3.8/9.6 | 1.5/3 | 1.6/4.1 | 2.6/6.4 | 3.3/8.2 | 3.8/9.6 |
| 16 | LL | 90 | 177 | 289 | 181 | 353 | 579 | 864 | 1230 | 271 | 530 | 868 | 1296 | 1846 |
|  | TL | 131 | 260 | 428 | 263 | 519 | 856 | 1124 | 1391 | 394 | 779 | 1284 | 1685 | 2086 |
|  | BRG | 1.5/3 | 1.5/3.6 | 2.3/5.8 | 1.5/3 | 1.5/3.6 | 2.3/5.8 | 3.1/7.7 | 3.8/9.5 | 1.5/3 | 1.5/3.6 | 2.3/5.8 | 3.1/7.7 | 3.8/9.5 |
| 17 | LL | 75 | 147 | 241 | 151 | 295 | 483 | 720 | 1026 | 226 | 442 | 724 | 1081 | 1539 |
|  | TL | 109 | 216 | 356 | 218 | 431 | 711 | 994 | 1230 | 326 | 647 | 1067 | 1490 | 1845 |
|  | BRG | 1.5/3 | 1.5/3.2 | 2.1/5.2 | 1.5/3 | 1.5/3.2 | 2.1/5.2 | 2.9/7.2 | 3.6/8.9 | 1.5/3 | 1.5/3.2 | 2.1/5.2 | 2.9/7.2 | 3.6/8.9 |
| 18 | LL | 64 | 124 | 203 | 127 | 248 | 407 | 607 | 864 | 191 | 372 | 610 | 910 | 1296 |
|  | TL | 91 | 181 | 299 | 182 | 361 | 597 | 885 | 1095 | 273 | 542 | 896 | 1327 | 1643 |
|  | BRG | 1.5/3 | 1.5/3 | 1.8/4.6 | 1.5/3 | 1.5/3 | 1.8/4.6 | 2.7/6.8 | 3.4/8.4 | 1.5/3 | 1.5/3 | 1.8/4.6 | 2.7/6.8 | 3.4/8.4 |
| 19 | LL | 54 | 105 | 173 | 108 | 211 | 346 | 516 | 735 | 162 | 316 | 519 | 774 | 1102 |
|  | TL | 77 | 153 | 253 | 153 | 306 | 506 | 760 | 981 | 230 | 459 | 759 | 1139 | 1472 |
|  | BRG | 1.5/3 | 1.5/3 | 1.7/4.1 | 1.5/3 | 1.5/3 | 1.7/4.1 | 2.5/6.2 | 3.2/8 | 1.5/3 | 1.5/3 | 1.7/4.1 | 2.5/6.2 | 3.2/8 |
| 20 | LL | 46 | 90 | 148 | 93 | 181 | 296 | 442 | 630 | 139 | 271 | 445 | 664 | 945 |
|  | TL | 65 | 130 | 216 | 130 | 261 | 432 | 649 | 884 | 195 | 391 | 648 | 974 | 1326 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.7 | 2.2/5.6 | 3/7.6 | 1.5/3 | 1.5/3 | 1.5/3.7 | 2.2/5.6 | 3/7.6 |
| 22 | LL | 35 | 68 | 111 | 70 | 136 | 223 | 332 | 473 | 104 | 204 | 334 | 499 | 710 |
|  | TL | 48 | 97 | 161 | 96 | 193 | 321 | 484 | 694 | 144 | 290 | 482 | 726 | 1040 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3.1 | 1.5/3 | 1.5/3 | 1.5/3.1 | 1.8/4.6 | 2.6/6.6 | 1.5/3 | 1.5/3 | 1.5/3.1 | 1.8/4.6 | 2.6/6.6 |
| 24 | LL | 27 | 52 | 86 | 54 | 105 | 172 | 256 | 365 | 80 | 157 | 257 | 384 | 547 |
|  | TL | 36 | 73 | 122 | 72 | 146 | 245 | 370 | 530 | 108 | 219 | 367 | 554 | 796 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.9 | 2.2/5.5 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.9 | 2.2/5.5 |
| 26 | LL | 21 | 41 | 67 | 42 | 82 | 135 | 201 | 287 | 63 | 124 | 202 | 302 | 430 |
|  | TL | 27 | 56 | 95 | 55 | 113 | 190 | 288 | 414 | 82 | 169 | 284 | 431 | 621 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.3 | 1.9/4.7 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.3 | 1.9/4.7 |
| 28 | LL | 17 | 33 | 54 | 34 | 66 | 108 | 161 | 230 | 51 | 99 | 162 | 242 | 344 |
|  | TL | 21 | 44 | 75 | 42 | 88 | 149 | 227 | 328 | 63 | 132 | 224 | 341 | 492 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.6/4.1 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.6/4.1 |
| 30 | LL | 14 | 27 | 44 | 27 | 54 | 88 | 131 | 187 | 41 | 80 | 132 | 197 | 280 |
|  | TL | 16 | 35 | 60 | 33 | 70 | 119 | 182 | 264 | 49 | 104 | 179 | 273 | 395 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.5 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.5 |

## Can be applied to the CP-LAM beam in addition to its own weight. • Simple or multiple CP-LAM beam spans

## Key to Table:

$L L=$ Maximum live load- limits deflection to $L / 360$
TL= Maximum total load - limits deflection to L/240
$B R G=$ Required end/intermediate bearing length (inches), based on plate bearing stress of 850 psi .

### 2.1ECP-LAM

ALLOWABLE UNIFORM LOADS ROOF SNOW 115\%
ALLOWABLE UNIFORM LOADS* - POUNDS PER LINEAR FOOT-1-3/4" 2.1E CP-LAM

| Span (ft) | Key | One 1-3/4" CP-LAM |  |  | Two 1-3/4" CP-LAM |  |  |  |  | Three 1-3/4" CP-LAM |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 9-1/2" | 11-7/8" | $14^{\prime \prime}$ | 9-1/2" | 11-7/8" | 14" | 16" | 18" | 9-1/2" | 11-7/8" | 14" | $16^{\prime \prime}$ | 18" |
| 6 | TL | 1224 | 1640 | 2006 | 2447 | 3279 | 4132 | 5049 | 6102 | 3671 | 4919 | 6198 | 7573 | 9152 |
|  | LL | - | - | - | - | - | - | - | - | - | - | - | - | - |
|  | BRG | 2.5/6.2 | 3.3/8.3 | 4.2/10.4 | 2.5/6.2 | 3.3/8.3 | 4.2/10.4 | 5.1/12.8 | 6.2/15.4 | 2.5/6.2 | 3.3/8.3 | 4.2/10.4 | 5.1/12.8 | 6.2/15.4 |
| 8 | TL | 859 | 1127 | 1390 | 1718 | 2254 | 2780 | 3323 | 3917 | 2577 | 3380 | 4170 | 4984 | 5875 |
|  | LL | - | - | - | - | - | - | - | - | - | - | - | - | - |
|  | BRG | 2.3/5.8 | 3/7.6 | 3.8/9.4 | 2.3/5.8 | 3/7.6 | 3.8/9.4 | 4.5/11.2 | 5.3/13.2 | 2.3/5.8 | 3/7.6 | 3.8/9.4 | 4.5/11.2 | 5.3/13.2 |
| 10 | LL | 556 | - | - | 1111 | - | - | - | - | 1667 | - | - |  | - |
|  | TL | 651 | 858 | 1047 | 1302 | 1716 | 2093 | 2474 | 2882 | 1954 | 2573 | 3140 | 3711 | 4322 |
|  | BRG | 2.2/5.5 | 2.9/7.3 | 3.5/8.8 | 2.2/5.5 | 2.8/7.3 | 3.5/8.8 | 4.2/10.5 | 4.9/12.2 | 2.2/5.5 | 2.9/7.3 | 3.5/8.8 | 4.2/10.5 | 4.9/12.2 |
| 11 | LL | 418 | - |  | 835 | - | - | - |  | 1253 | - | - |  |  |
|  | TL | 537 | 766 | 931 | 1075 | 1532 | 1863 | 2193 | 2545 | 1612 | 2298 | 2794 | 3290 | 3817 |
|  | BRG | 2/5 | 2.9/7.1 | 3.5/8.7 | 2/5 | 2.977.1 | 3.5/8.7 | 4.1/10.2 | 4.7/11.8 | 2/5 | 2.9/7.1 | 3.5/8.7 | 4.1/10.2 | 4.7/11.8 |
| 12 | LL | 322 | 628 | - | 643 | 1256 | - | - | - | 965 | 1884 | - | - |  |
|  | TL | 424 | 675 | 839 | 849 | 1350 | 1678 | 1970 | 2278 | 1273 | 2025 | 2517 | 2954 | 3417 |
|  | BRG | 1.7/4.3 | 2.7/6.9 | 3.4/8.5 | 1.7/4.3 | 2.7/6.9 | 3.4/8.5 | 4/10 | 4.6/11.6 | 1.7/4.3 | 2.7/6.9 | 3.4/8.5 | 4/10 | 4.6/11.6 |
| 13 | LL | 253 | 494 | - | 506 | 988 | - | - | - | 759 | 1482 | - | - |  |
|  | TL | 333 | 574 | 763 | 666 | 1148 | 1526 | 1787 | 2061 | 999 | 1723 | 2289 | 2681 | 3092 |
|  | BRG | 1.5/3.7 | 2.5/6.3 | 3.4/8.4 | 1.5/3.7 | 2.5/6.3 | 3.4/8.4 | 3.9/9.8 | 4.5/11.3 | 1.5/3.7 | 2.5/6.3 | 3.4/8.4 | 3.9/9.8 | 4.5/11.3 |
| 14 | LL | 203 | 396 | 648 | 405 | 791 | 1296 | - |  | 608 | 1187 | 1944 | - |  |
|  | TL | 266 | 494 | 666 | 531 | 989 | 1332 | 1635 | 1882 | 797 | 1483 | 1997 | 2453 | 2823 |
|  | BRG | 1.5/3.2 | 2.4/5.9 | 3.2/7.9 | 1.5/3.2 | 2.4/5.9 | 3.2/7.9 | 3.9/9.7 | 4.5/11.2 | 1.5/3.2 | 2.4/5.9 | 3.2/7.9 | 3.9/9.7 | 4.5/11.2 |
| 15 | LL | 165 | 322 | 527 | 329 | 643 | 1054 | - | - | 494 | 965 | 1581 | - |  |
|  | TL | 215 | 423 | 579 | 430 | 847 | 1158 | 1475 | 1732 | 646 | 1270 | 1737 | 2212 | 2597 |
|  | BRG | 1.5/3 | 2.2/5.4 | 30/7.4 | 1.5/3 | 2.2/5.4 | 3/7.4 | 3.8/9.4 | 4.4/11 | 1.5/3 | 2.2/5.4 | 3/7.4 | 3.8/9.4 | 4.4/11 |
| 16 | LL | 136 | 265 | 434 | 271 | 530 | 868 | - | - | 407 | 795 | 1303 | - |  |
|  | TL | 177 | 348 | 508 | 353 | 696 | 1016 | 1294 | 1602 | 530 | 1044 | 1525 | 1941 | 2402 |
|  | BRG | 1.5/03 | 1.9/4.8 | 2.8/6.9 | 1.5/3 | 1.9/4.8 | 2.8/6.9 | 3.8/8.8 | 4.4/10.9 | 1.5/3 | 1.8/4.8 | 2.8/6.9 | 3.5/8.8 | 4.4/10.9 |
| 17 | LL | 113 | 221 | 362 | 226 | 442 | 724 | 1081 | - | 339 | 663 | 1086 | 1621 | - |
|  | TL | 146 | 289 | 449 | 293 | 578 | 899 | 1145 | 1417 | 439 | 867 | 1348 | 1717 | 2125 |
|  | BRG | 1.5/3 | 1.7/4.2 | 2.6/6.5 | 1.5/3 | 1.7/4.2 | 2.6/6.5 | 3.3/8.3 | 4.1/10.2 | 1.5/3 | 1.7/4.2 | 2.6/6.5 | 3.3/8.3 | 4.1/10.2 |
| 18 | LL | 95 | 186 | 305 | 191 | 372 | 610 | 910 | - | 286 | 558 | 915 | 1366 | - |
|  | TL | 123 | 243 | 400 | 245 | 485 | 800 | 1020 | 1262 | 368 | 728 | 1208 | 1529 | 1893 |
|  | BRG | 1.5/3 | 1.5/3.8 | 2.5/6.2 | 1.5/3 | 1.5/3.8 | 2.5/6.2 | 3.1/7.8 | 3.9/9.7 | 1.5/3 | 1.5/3.8 | 2.5/6.2 | 3.1/7.8 | 3.9/9.7 |
| 19 | LL | 81 | 158 | 259 | 162 | 316 | 519 | 774 | 1102 | 243 | 475 | 778 | 1161 | 1653 |
|  | TL | 104 | 206 | 339 | 207 | 411 | 679 | 914 | 1131 | 311 | 617 | 1018 | 1370 | 1696 |
|  | BRG | 1.5/3 | 1.5/3.4 | 2.2/5.5 | 1.5/3 | 1.5/3.4 | 2.2/5.5 | 3/7.4 | 3.7/9.2 | 1.5/3 | 1.5/3.4 | 2.2/5.5 | 3/7.4 | 3.7/9.2 |
| 20 | LL | 69 | 136 | 222 | 139 | 271 | 445 | 664 | 945 | 208 | 407 | 667 | 996 | 1418 |
|  | TL | 88 | 175 | 290 | 177 | 351 | 580 | 823 | 1019 | 265 | 526 | 870 | 1235 | 1529 |
|  | BRG | 1.5/3 | 1.5/3 | 2/5 | 1.5/3 | 1.5/3 | 2/5 | 2.8/7 | 3.5/8.7 | 1.5/3 | 1.5/3 | 2/5 | 2.8/7 | 3.5/8.7 |
| 22 | LL | 52 | 102 | 167 | 104 | 204 | 334 | 499 | 710 | 157 | 306 | 501 | 748 | 1065 |
|  | TL | 65 | 131 | 216 | 131 | 261 | 433 | 650 | 839 | 196 | 392 | 649 | 975 | 1259 |
|  | BRG | 1.5/3 | 1.5/3 | 1.6/4.1 | 1.5/3 | 1.5/3 | 1.6/4.1 | 2.5/6.1 | 3.2/7.9 | 1.5/3 | 1.5/3 | 1.6/4.1 | 2.5/6.1 | 3.2/7.9 |
| 24 | LL | 40 | 79 | 129 | 80 | 157 | 257 | 384 | 547 | 121 | 236 | 386 | 576 | 820 |
|  | TL | 49 | 99 | 165 | 99 | 199 | 330 | 498 | 703 | 148 | 298 | 496 | 746 | 1054 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3.5 | 1.5/3 | 1.5/3 | 1.5/3.5 | 2.1/5.2 | 2.9/7.3 | 1.5/3 | 1.5/3 | 1.5/3.5 | 2.1/5.2 | 2.9/7.3 |
| 26 | LL | 32 | 62 | 101 | 63 | 124 | 202 | 302 | 430 | 95 | 185 | 304 | 453 | 645 |
|  | TL | 38 | 77 | 129 | 76 | 154 | 257 | 388 | 557 | 114 | 231 | 386 | 582 | 836 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.8/4.4 | 2.5/6.3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.8/4.4 | 2.5/6.3 |
| 28 | LL | 25 | 49 | 81 | 51 | 99 | 162 | 242 | 344 | 76 | 148 | 243 | 363 | 517 |
|  | TL | 29 | 61 | 102 | 59 | 121 | 203 | 308 | 443 | 88 | 182 | 305 | 462 | 664 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.8 | 2.2/5.4 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.8 | 2.2/5.4 |
| 30 | LL | 21 | 40 | 66 | 41 | 80 | 132 | 197 | 280 | 62 | 121 | 198 | 295 | 420 |
|  | TL | 23 | 48 | 81 | 46 | 96 | 163 | 248 | 357 | 69 | 145 | 244 | 371 | 535 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.3 | 1.9/4.7 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.9/4.7 |

Can be applied to the CP-LAM beam in addition to its own weight. - Simple or multiple CP-LAM beam spans
Key to Table:
$L L=$ Maximum live load- limits deflection to $L / 360$
TL= Maximum total load - limits deflection to L/240
BRG= Required end/intermediate bearing length (inches), based on plate bearing stress of 850 psi.

## BEARING DETAILS

bearing on exterior wall
Prevent direct contact of CP-LAM with concrete. Consult local building oode for requirements

BEAM-TO-BEAM CONNECTION
Make sure hanger capacity is appropriate for each application.Hangers must be properly installed to accommodate full capacity

## $3 b$

Bearing ON WOOD COLUMN
Verify the required bearing area and the ability of the supporting column member to provide adequate strength

BEARING ON STEEL COLUMN
Verify the required bearing area and the ability of the supporting column member to provide adequate strength


WINDOW/DOOR
HEADER -2-STORY TYPICAL
See "Bearing
Length
Requirements"
below


For multi-ply CP Lam beam assembly conditions and fastening recommendations, see page 24

## BEARING LENGTH REQUIREMENTS

BEARING FOR DOOR OR WINDOW HEADER - 1-STORY TYPICAL
See "Bearing Length Requirements" below

## CP-LAM BEARING LENGTH REQUIREMENTS

| Support <br> Material |  | $\begin{aligned} & \hline \text { S-P-F (South) } \\ & \text { Hem-Fir } \\ & \text { (North }^{(5)} \\ & \hline \end{aligned}$ |  | $\underset{\text { S-P-F(5) }}{\text { Hem-Fir }}$ |  | Southern Pine Douglas Fir-Larch ${ }^{(5)}$ |  | $\begin{gathered} \text { 2.1E } \\ \text { CP-LAM }{ }^{(6)} \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{\mathrm{CL}}$ (psi) |  | 335 |  | 405 |  | 565 |  | 850 |  |
| $\begin{array}{\|r\|} \hline \text { CP-LA } \\ \text { Wi } \end{array}$ |  | 1-3/4" | 3-1/2" | 1-3/4" | 3-1/2" | 1-3/4" | 3-1/2" | 1-3/4" | 3-1/2" |
|  | 1 | 3" | 1-1/2" | 1-1/2" | 1-1/2" | 1-1/2" | 1-1/2" | 1-1/2" | 1-1/2" |
|  | 2 | 3-1/2" | 3" | $3{ }^{\prime \prime}$ | 1-1/2" | 3" | 1-1/2" | 1-1/2" | 1-1/2" |
|  | 3 | 5-1/2" | 3" | 4-1/2" | $3 "$ | 3-1/2" | 3" | 3" | 1-1/2" |
|  | 4 | 7-1/2" | 3-1/2" | $6{ }^{\prime \prime}$ | 3" | 4-1/2" | 3" | 3" | 1-1/2" |
|  | 5 | 9-1/4" | 4-1/2" | 7-1/4" | 4-1/2" | 5-1/2" | 3" | 3-1/2" | 3" |
|  | 6 |  | 5-1/2" | 9-1/4" | 4-1/2" | 7-1/4" | 3-1/2" | 4-1/2" | $3{ }^{\prime \prime}$ |
|  | 7 |  | $6 "$ |  | 5-1/2" | 7-1/4" | 4-1/2" | 5-1/2" | 3" |
|  | 8 |  | 7-1/4" |  | $6 "$ | 9-1/4" | 4-1/2" | 5-1/2" | 3-1/2" |
|  | 9 |  | 9-1/4" |  | 7-1/4" | 9-1/4" | 5-1/2" | 7-1/2" | 3-1/2" |
|  | 10 |  | 9-1/4" |  | 7-1/4" |  | 5-1/2" | 7-1/2" | 3-1/2" |
|  | 11 |  |  |  | 9-1/4" |  | $6 "$ | 7-1/2" | 4-1/2" |
|  | 12 |  |  |  | 9-1/4" |  | 7-1/4" | 9" | 4-1/2" |


| Support Material |  | S-P-F (South) |  | $\begin{aligned} & \text { Hem-Fir } \\ & \text { S-P-F(5) } \end{aligned}$ |  | Southern Pine Douglas Fir-Larch ${ }^{(5)}$ |  | $\begin{gathered} \text { 2.1E } \\ \text { CP-LAM }{ }^{(6)} \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F ${ }_{\text {CL }}$ (psi) <br> CP-LAM Beam <br> Width (in) |  |  | 5 |  |  |  | 65 |  | 50 |
|  |  | 1-3/4" | 3-1/2" | 1-3/4" | 3-1/2" | 1-3/4" | 3-1/2" | 1-3/4" | 3-1/2" |
|  | 13 |  |  |  | 9-1/4" |  | 7-1/4" |  | 4-1/2" |
|  | 14 |  |  |  |  |  | 7-1/4" | $9{ }^{\prime \prime}$ | 5-1/2" |
|  | 15 |  |  |  |  |  | 9-1/4" |  | 5-1/2" |
|  | 16 |  |  |  |  |  | 9-1/4" |  | 5-1/2" |
|  | 17 |  |  |  |  |  | 9-1/4" |  | $6 "$ |
|  | 18 |  |  |  |  |  | 9-1/4" |  | 7-1/2" |
|  | 19 |  |  |  |  |  |  |  | 7-1/2" |
|  | 20 |  |  |  |  |  |  |  | 7-1/2" |
|  | 21 |  |  |  |  |  |  |  | 7-1/2" |
|  | 22 |  |  |  |  |  |  |  | 7-1/2" |
|  | 23 |  |  |  |  |  |  |  | 9" |

## Notes:

1. The minimum required bearing length is $1-1 / 2$ "
2. Duration of load factors may not be applied to bearing length requirements.
3. All CP-Lam beams require support across their full width.
4. All CP-LAM beams require lateral support at bearing points.

## HOLE DETAILS

5. Use these values when the CP-LAM beam is supported by a wall plate, sill plate, timber or built up girder.
6. Use these values when the CP-LAM beam is supported by the end of a column or connection hardware.
7. The support member must be sized to carry the load from the CP-LAM beam.

## HOLES IN CP-LAM BEAMS



End Support

## NOTES:

1. This technical note applies only to uniformly loaded, simple and multiple span CP-LAM beams. Beams that carry concentrated loads, or cantilevered beams, are outside the scope of this technical note.
2. Square and rectangle holes are not permitted.
3. Round holes may be drilled or cut with a hole saw anywhere within the shaded area of the CP-LAM beam.
4. The horizontal distance between adjacent holes must be at least two times the size of the larger hole. This restriction also applies to the location of access holes relative to bolt holes in multi-ply CP-LAM beams.
5. Do not drill more than three access holes in any four foot long section of CP-LAM beam.
6. The maximum round hole diameter permitted is:

| CP-LAM Beam Depth | $5-1 / 2^{\prime \prime}$ | $7-1 / 2^{\prime \prime}$ | $9-1 / 2^{\prime \prime}$ to $24^{\prime \prime}$ |
| :--- | :--- | :--- | :--- |
| Maximum Hole Diameter | $3 / 4^{\prime \prime}$ | $1^{\prime \prime}$ | $1-1 / 2^{\prime \prime}$ |

7. These limitations apply to holes drilled for plumbing or wiring access only. The size and location of holes drilled for fasteners are governed by the provisions of National Design Specifications $®$ for wood construction.
8. CP-LAM beams deflect under load. Size holes to provide clearance where required.

## MULTI-PLY

CP-LAM BEAM ASSEMBLY
COMBINATIONS OF 1-3/4" AMD 3-1/2" PLIES
CONDITION A


## MAXIMUM UNIFORM SIDE LOAD (PLF) 2.1 E CP-LAM

|  | 3-1/2" X 0.131: Nails |  | 16d Common Nails |  | 1/2" Bolts |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIECES IN MEMBER | 2 Rows at 12" O.C. | 3 Rows at 12" O.C. | 2 Rows at 12" O.C. | 3 Rows at 12" O.C. | 2 Rows at 24" O.C. | 2 Rows at 12" O.C. | 3 Rows at 12" O.C. |
| Condition A (2-1-3/4") | 390 | 585 | 505 | 760 | 510 | 1015 | 1520 |
| Condition B (3-1-3/4") | 290 | 435 | 380 | 570 | 380 | 760 | 1140 |
| Condition C (2-1-3/4" + 1 -3-1/2") | 260 | 390 | 340 | 505 | 465 | 930 | 1395 |
| Condition D (4-1-3/4) |  | use bolts for this condition |  |  | 340 | 680 | 1015 |
| Condition E (2-3-1/2") |  | use bolts for this condition |  |  | 860 | 1720 | 2580 |

## Notes:

1. Minimum fastener schedule for smaller side loads and top-locked CP-LAM beams:
Conditions A,B,\& C, beams $12^{\prime \prime}$ deep or less:
2 rows $3-1 / 2^{\prime \prime} \times 0.131$ " at 12 " O.C.
Conditions A, B \& C, beams deeper than 12 ":
3 rows $3-1 / 2^{\prime \prime} \times 0.131$ " at 12 " O.C.
Conditions D \& E, all beam depths:
2 rows $1 / 2$ " bolts at $24^{\prime \prime}$ O.C.
2. The table values for nails may be doubled for 6" O.C. and tripled for

4" O.C. nail spacings.
3. The nail schedules shown apply to both sides of a three-ply CP-LAM beams.
4. The table values apply to common bolts that conform to ANSI/ASME Standard B18.2.2-10981. A washer not less than a standard cut washer shall be between the wood and the bolt head and between the wood and the nut. The distance from the edge of the CP-LAM beam to the bolt holes must be at least 2 " for $1 / 2$ " bolts. Bolt holes shall be the same diameter as the bolt.
5. 7" wide CP-LAM beams must be loaded from both sides and/or top loaded.
6. CP-LAM beams wider than 7 " must be designed by the engineer of record.
7. Load duration factors may be applied to the table values.

## HOW TO USE THE MAXIMUM UNIFORM SIDE LOADTABLE

## EXAMPLE:

2.1E CP-LAM beam loaded tables from both sides and above

THREE 1-3/4" Plies (CONDITION B)

1. Use allowable load tables or sizing software to size the CP-LAM beam to carry a total load of $(300+610+550)=1460$ plf.
2. Refer to the 2.1E CP-LAM table for beam assembly requirements. Refer to the condition $B$ row in the table. Scan across the Condition B row from left to right for a table value greater than 550 plf, which is the greatest side load carried by the beam. The fourth value in the row indicates that 3 rows of 16d common nails at 12" O.C. will accommodate a side load of 570 plf which is greater than the 550 plf required. Use 3 rows of 16 d common nails at 12 " O.C., from both sides, to assemble the beam.


## PWT TREATED LVL

## TREATED LAMINATED VENEER LUMBER

## REFERENCE DESIGN VALUE

## DRY USE

True (Shear-Free) Modulus of Elasticity, $\quad E=2,000,000^{(1)(4)}$
Bending (beam), $\mathrm{Fb}=2,800^{(2)(3)}$
Horizontal Shear (beam), $\quad \mathrm{Fv}=285$ psi
Compression perpendicular to grain [psi], $\mathrm{Fc}=850 \mathrm{psi}$
(1) Do not adjust for load duration.
(2) Adjust by ( $12 / \mathrm{d})^{0.2}$, where d is the depth of the member [inches].
(3) Adjust by 1.04 for repetitive members as defined in the NDS.
(4) True (Shear-Free) modulus of elasticity does not account for shear deformation.
(5) See APA Product Report PR-L329.

## NOTE:

Not all exterior conditions are wet-use and not all interior conditions are dry use. $\quad$ Flashing tape required to meet PWT
See What are wet use conditions on our website for more information on this subject.
joists, supported by PWT Treated LVL ledger or beams and columns, with proper connectors and fasteners.

PWT Treated LVL ledger or beams and columns per local code requiremnts, with proper deck anchors/ties, connectors, and fasteners.

## NOTES:

1. For diagonal bracing, see AWC Deck Construction Guide, page 10, figure 10 located at pacificwoodtech.com/treated.
2. For flashing tape recommendations, visit pacificwoodtech.com/treated.
3. For fastener and hanger information, visit strongtie.com/deckcenter.
4. Design conditions outside of the scope of this guide may be designed using CSD Software.

TREATED RIGHT'

## PWT TREATED LVL <br> TREATED LAMINATED VENEER LUMBER

## Product Hightlights

- PWT Treated LVL is the only manufacturer-treated LVL, and it is covered by a 25 -year limited, transferable warrranty.
- PWT Treated LVL is protected against damage caused by fungal rot, decay and wood-destroying insects, including Formosan termites (interior or exterior usage.)
-We use a proprietary treatment system and process, utilizing TRU-CORE ${ }^{\oplus}$ technology.


## The Product

- PWT Treated LVL may be used in exterior coonstruction above-ground applications (UC3B) and for components that are difficult to maintain, repair, or replace and that are critical to the performance and safety of the entire system:
- Deck substructures, exterior columns, sill plates and fascia
- Treatment is added during the LVL manufacturing process, which fully penetrates throughout each veneer layer, offering complete protection from the inside out
- No treatement gradient - and double (2X) the preservative retention required in various standards around the world
- Additionally, envelope treated for best surface properties


## Product Identification

Product will have a muted olive tint


Stamp: "PWT TREATED"


Special PWT Treated LVL paper wrap



## ENGINEERED STUDS

## COASTAL PRO ENGINEERED TALL WALL STUDS

- Douglas fir LVL or MFR black spruce
- For walls that are stiff, straight, and strong
- Coastal Pro studs are engineered to reduce twisting, warping, and splitting
- The ideal product to be used in installation of counters and cabinets in kitchens without the hassles of shimming
- Reduce construction time when installing tall walls
- Available in $2 \times 4$ and $2 \times 6$ with lengths up to 24 feet
- Building-code approved

There is no question that the total savings to builders and framers far outweighs the initial premium they may pay for Coastal Pro Studs.

Coastal Pro LVL Studs:
Doug Fir, waxed \& eased edge
MOE ( Modulus of Elasticity):
Fb (Bending):

Fv (Horizontal Shear):
Fe (Compression Parallel to grain):

| Also Available: Coastal Pro Engineered Framing Studs |  |
| :--- | :--- |
| MSR Black Spruce |  |
| MOE - Modulus of Elasticity): | $1,600,000$ psi |
| Fb (Bending): | $1,200 \mathrm{psi}$ |
| Fc (Compression Parallel To Grain) | $1,600 \mathrm{psi}$ |

Also Available: Coastal Pro Engineered Framing Studs MSR Black Spruce

2735 psi $-2 \times 4$
2945 psi- $2 \times 6$
220 psi
1,950 psi


## PRESSURE TREATED GLULAM ${ }^{\circledR}$ BEAMS \& COLUMNS

Power Glulam ${ }^{\circledR}$ Beams • Power Glulam ${ }^{\circledR}$ Columns• Power Glulam ${ }^{\ominus}$ Preserved ${ }^{\oplus}$ Preserved Beams • Power Glulam ${ }^{\ominus}$ Preserved Columns


## DESIGN PROPERTIES 3000F

| Allowable Design Stresses (psi) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Flexural Stress** Fb | ```Tension Parallel to Grain Ft 1350``` |  | ```Compression Perpendicular to Grain Fc1 805``` |  | Horizontal Shear $\mathrm{F}_{\mathrm{V}}$ | Modulus of Elasticity E |  |
| 3-1/2", 5-1/2" \& 7" | 3000 |  |  | 300 | 2,100,000 |  |
| Depth (in) | 7-1/4 | 9-1/4 | 9-1/4 |  |  | 11-1/4 | 11-7/8 | 14 | 16 | 18 |
| Weight* (lbs/ft) | 7.0 | 9.0 | 9.2 | 10.9 | 11.6 | 13.6 | 15.6 | 17.5 |
| $\mathrm{C}_{\mathrm{db}}$ Factor ( $\mathrm{L}=21^{\prime}$ ) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.999 |
| $1\left(i{ }^{4}\right.$ ) | 111 | 231 | 250 | 415 | 489 | 800 | 1195 | 1701 |
| Moment Capacity (lbs-ft) | 7665 | 12478 | 13161 | 18457 | 20582 | 28583 | 37333 | 47193 |
| Shear Capacity (lbs) | 5075 | 6475 | 6650 | 7875 | 8316 | 9800 | 11200 | 12600 |
| 5-1/2" Beam Width |  |  |  |  |  |  |  |  |
| Depth (in) | 7-1/4 | 9-1/4 | 9-1/2 | 11-1/4 | 11-7/8 | 14 | 16 | 18 |
| Weight* (lbs/ft) | 11.1 | 14.1 | 14.5 | 17.2 | 18.2 | 21.4 | 24.4 | 27.5 |
| $\mathrm{C}_{\mathrm{db}}$ Factor (L=21') | 1.00 | 1.00 | 1.00 | 0.997 | 0.989 | 0.989 | 0.982 | 0.976 |
| $1\left(i{ }^{4}\right.$ ) | 175 | 363 | 393 | 653 | 768 | 1258 | 1877 | 2673 |
| Moment Capacity (lbs-ft) | 12046 | 19608 | 20682 | 28916 | 32246 | 44415 | 57625 | 72503 |
| Shear Capacity (lbs) | 7975 | 10175 | 10450 | 12375 | 13068 | 15400 | 17600 | 19800 |
| 7"Beam Whdth |  |  |  |  |  |  |  |  |
| Depth (in) | 7-14 | 9-1/4 | 9-1/2 | 11-1/4 | 11-7/8 | 14 | 16 | 18 |
| Weight* (lbs/ft) | 14.1 | 18.0 | 18.5 | 21.9 | 23.1 | 27.2 | 31.1 | 35.0 |
| $\mathrm{C}_{\mathrm{db}}$ Factor (L=21') | 1.00 | 0.997 | 0.996 | 0.988 | 0.985 | 0.977 | 0.970 | 0.965 |
| $1\left(\mathrm{in}^{4}\right)$ | 222 | 462 | 500 | 8.31 | 978 | 1601 | 2389 | 3402 |
| Moment Capacity (lbs-ft) | 14309 | 23231 | 24472 | 34030 | 37845 | 52127 | 67631 | 85093 |
| Shear Capacity (lbs) | 10150 | 12950 | 13300 | 15750 | 16632 | 19600 | 22400 | 25200 |
| 7 " Beam Width |  |  |  |  |  |  |  |  |
| Depth (in) | 19-1/4 | 20-5/8 | 22 | 12-7/8 | 24-3/4 | 26-1/8 | 27-1/2 | 28-7/8 |
| Weight* (lbs/ft) | 37.4 | 40.1 | 42.8 | 45.5 | 48.1 | 50.8 | 53.5 | 56.1 |
| $\mathrm{C}_{\mathrm{db}}$ Factor (L=21) | 0.962 | 0.958 | 0.955 | 0.952 | 0.950 | 0.947 | 0.945 | 0.942 |
| $1\left(\mathrm{in}^{4}\right)$ | 4161 | 5118 | 6211 | 7450 | 8844 | 10401 | 12132 | 14044 |
| Moment Capacity (lbs-ft) | 96996 | 110964 | 125845 | 141637 | 158338 | 175943 | 19451 | 213860 |
| Shear Capacity (lbs) | 26950 | 28875 | 30800 | 32725 | 34650 | 36575 | 38500 | 40425 |

* Beam Weights are based on 40 pcf.
** Flexural Stress, Fb, shall be modified by Volume Factor, Cv, as outlined in ICC ESR-1940, APA
Product report-L263 and APA-EWS Y117 where;
$\mathrm{Cv}=\mathrm{K} L\left[(21 / \mathrm{L})^{0.05} \times(12 / \mathrm{d})^{0.05} \times(5.125 / \mathrm{b})^{0.05}\right]<1.0$

| Stock Depths |  |
| :--- | :--- |
| $9-1 / 2^{\prime \prime}$ | $16^{\prime \prime}$ |
| $11-7 / 8^{\prime \prime}$ | $18^{\prime \prime}$ |
| $144^{\prime \prime}$ |  |

$\mathrm{K} \mathrm{L}=$ loading coefficient ( 1.0 for uniformly distributed),
$\mathrm{L}=$ length of bending member between points of zero moment, ft.,
$d=$ depth of bending member, in.
$b=$ width of bending member, in.
Tabulated Moment Capacities are based on a span of 21 feet and modified for other spans.
Width and depth portions of Volume Factor, Cv, are incorporated in tabulated Moment Capacities using Cab Factor.

## Note:

Allowable design properties and load capacities are based on a load duration of 100 percent and dry use conditions.

DESIGN PROPERTIES 3000F

## VERTICAL HOLES

Whenever possible, avoid drilling vertical holes through glulam beams. As a rule of thumb, vertical holes drilled through the depth of a glulam beam will cause a reduction in the capacity at the location directly proportional to the ratio of 1-1/2 times the diameter of the hole to the width of the beam. For example a one inch drilled hole in a 6 -inch wide beam would reduce the capacity of the beam at that section by approximately $\frac{(1 \times 1-1 / 2)}{6}=25 \%$
For this reason, when it is necessary to drill vertical holes through a glulam member, the holes should be positioned in areas of the member that are stressed to less than 50 percent of design in bending. In a simply supported, uniformally loaded beam, this area would be located from the end of the beam inward approximately $1 / 8$ of the beam span. In all cases, the minimum clear edge distance, as measured from either side of the member to the nearest edge of the vertical hole, should be $2-1 / 2$ times the hole diameter. Use a drill guide to minimize " wandering" of the bit as it passes through knots or material of varying density, and to insure a true alignment of the hole through the depth of the beam.

## HORIZONTAL HOLES

Like notches, holes in a glulam beam remove wood fiber, thus reducing the net area of the beam at the hole location and introducing stress concentrations. These effects cause a reduction in the capacity of the beam in the area of the penetration. For this reason, horizontal holes in glued laminated timbers are limited in size and location to maintain the structural integrity of the beam. Figure 1 shows the zones of a uniformly loaded, simply supported beam where the field drilling of holes may be considered. These non-critical zones are located in portions of the beam stressed to less than 50 percent of design bending stress and less than 50 percent of design shear stress. For beams of more complex loading or other than simple spans, similar diagrams may be developed.

ZONES WHERE SMALL HORIZONTAL HOLES ARE PERMITTED IN A UNIFORMLY LOADED, SIMPLY SUPPORTED BEAM


Zones where horizontal holes are permitted for passage of wires, conduit, etc.

$$
\ell=\text { length of beam } \quad d=\text { length of beam }
$$

Field-drilled holes should be used for access only and should not be used as attachment points for brackets or other load bearing hardware unless specifically designed as such by the engineer or designer. Examples of access holes include those used for the passage of wires, electrical conduit, small diameter sprinkler pipes, fiber optic cables, and other small, lightweight materials. These field-drilled horizontal holes should meet the following guidelines:

1. Hole size: the hole diameter should not exceed 1-1/2 inches or $1 / 10$ the beam depth, whichever is smallest, with the exception of 1-inch-diameter or smaller holes as noted in Item 2 below.
2. Hole location: The hole should have a minimum clear distance, as measured from the edge of the hole to the nearest of the beam, of 4 hole diameters to the top or bottom face of the beam and 8 hole diameters from the end of the beam. Note that the horizontal hole should not be drilled in the moment-critical zone, as defined in the figure above, unless
approved by an engineer or architect qualified in engineered timber design.

## Power Beañ allowablefloorloadtables LDF=1.0-3000F

These tables can be used to size simple span beams and headers that carry uniform loads. The PLF loads must be calculated and take into account all floor and roof framing loads coming onto the beam or header.
Key: For each clear span there are three numbers:

Row 1: Maximum Total Load with LDF of 1.0, and deflection limited to L/120
Row 2: Maximum Live Load limited by deflection of L/360
Row 3: Required Bearing Length in trimmer thickness
(e.g. $1.5=1$ trimmer, $3.0=2$ trimmers, etc.)

| ALLOWABLE FLOOR LOAD TABLES LDF=1.0-3000F |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Actual Span | 3-1/2" |  |  |  |  |  |  |  | 5-1/2" |  |  |  |  |  |  |  |
|  | Depth (in.) |  |  |  |  |  |  |  | Depth (in.) |  |  |  |  |  |  |  |
|  | $71 / 4$ | $91 / 4$ | $91 / 2$ | 111/4 | 117/8 | 14 | 16 | 18 | $71 / 4$ | $91 / 4$ | 91/2 | $111 / 4$ | 117/8 | 14 | 16 | 18 |
| 7' | 1251 | 2037 | 2149 | 3013 | 3311 | 4200 | 5169 | 6300 | 1967 | 3201 | 3377 | 4735 | 5203 | 6600 | 8123 | 9900 |
|  | 1008 | 2037 | 2149 | 3013 | 3311 | 4200 | 5169 | 6300 | 1584 | 3201 | 3377 | 4735 | 5203 | 6600 | 8123 | 9900 |
|  | 3 | 3 | 3 | 4.5 | 4.5 | 6 | 7.5 | 9 | 3 | 3 | 3 | 4.5 | 4.5 | 6 | 7.5 | 9 |
| 8' | 958 | 1560 | 1645 | 2307 | 2571 | 3459 | 4200 | 5040 | 1506 | 2451 | 2585 | 3625 | 4040 | 5435 | 6600 | 7920 |
|  | 675 | 1403 | 1520 | 2307 | 2571 | 3459 | 4200 | 5040 | 1061 | 2204 | 2388 | 3625 | 4040 | 5435 | 6600 | 7920 |
|  | 1.5 | 3 | 3 | 4.5 | 4.5 | 6 | 7.5 | 9 | 1.5 | 3 | 3 | 4.5 | 4.5 | 6 | 7.5 | 9 |
| 9' | 712 | 1232 | 1300 | 1823 | 2031 | 2823 | 3537 | 4200 | 1178 | 1937 | 2043 | 2865 | 3192 | 4436 | 5558 | 6600 |
|  | 474 | 985 | 1067 | 1772 | 2031 | 2833 | 3537 | 4200 | 745 | 1548 | 1677 | 2785 | 3192 | 4436 | 5558 | 6600 |
|  | 1.5 | 3 | 3 | 3 | 4.5 | 6 | 6 | 7.5 | 1.5 | 3 | 3 | 3 | 4.5 | 6 | 6 | 7.5 |
| 10' | 519 | 998 | 1053 | 1477 | 1645 | 2287 | 2987 | 3600 | 815 | 1569 | 1655 | 2320 | 2585 | 3593 | 4693 | 5657 |
|  | 346 | 718 | 778 | 1292 | 1520 | 2287 | 2987 | 3600 | 543 | 1129 | 1223 | 2030 | 2388 | 3593 | 4693 | 5657 |
|  | 1.5 | 3 | 3 | 3 | 3 | 4.5 | 6 | 7.5 | 1.5 | 3 | 3 | 3 | 3 | 4.5 | 6 | 7.5 |
| 11' | 390 | 809 | 870 | 1220 | 1360 | 1890 | 2468 | 3124 | 612 | 127 | 1367 | 1918 | 2137 | 2970 | 3879 | 4909 |
|  | 260 | 540 | 585 | 971 | 1142 | 1871 | 2468 | 3124 | 408 | 848 | 919 | 1525 | 1794 | 2940 | 3879 | 4909 |
|  | 1.5 | 3 | 3 | 3 | 3 | 4.5 | 6 | 7.5 | 1.5 | 3 | 3 | 3 | 3 | 4.5 | 6 | 7.5 |
| 12' | 300 | 623 | 675 | 1025 | 1142 | 1588 | 2074 | 2625 | 472 | 980 | 1061 | 1611 | 1795 | 2495 | 3259 | 4125 |
|  | 200 | 416 | 450 | 748 | 879 | 1441 | 2074 | 2625 | 314 | 653 | 707 | 1175 | 1382 | 2264 | 3259 | 4125 |
|  | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 6 | 6 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 6 | 6 |
| 13' | 236 | 490 | 531 | 874 | 973 | 1353 | 1767 | 2237 | 371 | 771 | 835 | 1373 | 1530 | 2126 | 2777 | 3515 |
|  | 157 | 327 | 354 | 588 | 692 | 1133 | 1692 | 2237 | 247 | 514 | 556 | 924 | 1087 | 1781 | 2658 | 3515 |
|  | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 6 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 6 |
| $14^{\prime}$ | 189 | 393 | 425 | 706 | 831 | 1167 | 1524 | 1929 | 297 | 617 | 668 | 1110 | 1305 | 1833 | 2395 | 3020 |
|  | 126 | 262 | 284 | 471 | 554 | 907 | 1354 | 1929 | 198 | 411 | 446 | 740 | 870 | 1426 | 2128 | 3020 |
|  | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 6 | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 6 |
| 15' | 154 | 319 | 346 | 574 | 675 | 1016 | 1327 | 1680 | 242 | 502 | 543 | 902 | 1061 | 1597 | 2084 | 2622 |
|  | 102 | 213 | 231 | 383 | 450 | 738 | 1101 | 1568 | 161 | 334 | 362 | 602 | 707 | 1159 | 1731 | 2464 |
|  | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 6 | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 6 |
| 16' | 127 | 263 | 285 | 473 | 556 | 893 | 1167 | 1477 | 199 | 413 | 448 | 744 | 874 | 1404 | 1825 | 2297 |
|  | 84 | 175 | 190 | 315 | 371 | 608 | 907 | 1292 | 133 | 276 | 298 | 496 | 583 | 955 | 1426 | 2030 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 45 | 4.5 |
| $17^{\prime}$ | 106 | 219 | 238 | 394 | 464 | 760 | 1033 | 1308 | 166 | 345 | 373 | 620 | 729 | 1195 | 1612 | 2028 |
|  | 70 | 146 | 158 | 263 | 309 | 507 | 757 | 1077 | 111 | 230 | 249 | 413 | 486 | 796 | 1189 | 1693 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 4.5 | 4.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 4.5 | 4.5 |
| 18' | 89 | 185 | 200 | 332 | 391 | 640 | 922 | 1167 | 140 | 290 | 314 | 522 | 614 | 1006 | 1434 | 1804 |
|  | 59 | 123 | 133 | 222 | 261 | 427 | 637 | 907 | 93 | 194 | 210 | 348 | 409 | 671 | 1001 | 1426 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 |
| 19' | 76 | 157 | 170 | 283 | 332 | 545 | 813 | 1047 | 119 | 247 | 267 | 444 | 522 | 856 | 1277 | 1615 |
|  | 50 | 105 | 113 | 188 | 222 | 363 | 542 | 772 | 79 | 165 | 178 | 296 | 348 | 570 | 852 | 1212 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 |
| 20' | 65 | 135 | 146 | 242 | 285 | 467 | 697 | 945 | 102 | 212 | 229 | 381 | 448 | 734 | 1095 | 1454 |
|  | 43 | 90 | 97 | 161 | 190 | 311 | 465 | 662 | 68 | 141 | 153 | 254 | 298 | 489 | 730 | 1040 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 |
| 21' | 56 | 116 | 126 | 209 | 246 | 403 | 602 | 856 | 88 | 183 | 198 | 329 | 387 | 634 | 946 | 1315 |
|  | 37 | 78 | 84 | 140 | 164 | 269 | 401 | 571 | 59 | 122 | 132 | 219 | 258 | 422 | 631 | 898 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 |
| 22' | 49 | 101 | 110 | 182 | 214 | 351 | 524 | 745 | 77 | 159 | 172 | 286 | 336 | 551 | 823 | 1171 |
|  | 32 | 67 | 73 | 121 | 143 | 234 | 349 | 497 | 51 | 106 | 115 | 191 | 224 | 367 | 549 | 781 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 |
| 23' | 43 | 89 | 96 | 159 | 187 | 307 | 458 | 652 | 67 | 139 | 151 | 250 | 294 | 482 | 720 | 125 |
|  | 28 | 59 | 64 | 106 | 125 | 205 | 305 | 435 | 45 | 93 | 100 | 167 | 196 | 322 | 480 | 683 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 |
| $24^{\prime}$ | 38 | 78 | 84 | 140 | 165 | 270 | 403 | 574 | 59 | 122 | 133 | 220 | 259 | 425 | 634 | 902 |
|  | 25 | 52 | 56 | 93 | 110 | 180 | 269 | 383 | 39 | 82 | 88 | 147 | 173 | 283 | 422 | 602 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 |
| $25^{\prime}$ | 33 | 69 | 75 | 124 | 146 | 239 | 357 | 508 | 52 | 108 | 117 | 195 | 229 | 376 | 561 | 798 |
|  | 22 | 46 | 50 | 83 | 97 | 159 | 238 | 339 | 35 | 72 | 78 | 130 | 153 | 250 | 374 | 532 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 |
| $26^{\prime}$ | 26 | 55 | 59 | 98 | 116 | 190 | 283 | 403 | 41 | 86 | 93 | 155 | 182 | 298 | 445 | 634 |
|  | 18 | 36 | 40 | 66 | 77 | 127 | 189 | 269 | 28 | 57 | 62 | 103 | 121 | 199 | 297 | 422 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 |
| $27^{\prime}$ | 30 | 61 | 66 | 110 | 130 | 212 | 317 | 452 | 46 | 96 | 104 | 173 | 204 | 334 | 498 | 710 |
|  | 20 | 41 | 44 | 74 | 86 | 142 | 211 | 301 | 31 | 64 | 70 | 116 | 136 | 223 | 332 | 473 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 |
| $28^{\prime}$ | 24 |  | 53 |  |  |  |  |  | 37 |  | 84 | 139 | 163 | 267 | 399 | 568 |
|  | 16 | 33 | 35 | 59 | 69 | 113 | 169 | 241 | 25 | 51 | 56 | 92 | 109 | 178 | 266 | 379 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 |
| $29^{\prime}$ | 21 | 44 | 48 | 79 | 93 | 153 | 229 | 325 | 33 | 59 | 75 | 125 | 147 | 241 | 359 | 511 |
|  | 14 | 29 | 32 | 53 | 62 | 102 | 152 | 217 | 22 | 46 | 50 | 83 | 98 | 160 | 239 | 341 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 |
| $30^{\prime}$ | 19 | 40 | 43 | 72 | 84 | 138 | 206 | 294 | 30 | 63 | 68 | 113 | 133 | 217 | 324 | 462 |
|  | 13 | 27 | 29 | 48 | 56 | 92 | 138 | 196 | 20 | 42 | 45 | 75 | 88 | 145 | 216 | 308 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 |
| $32^{\prime}$ | 16 | 33 | 36 | 59 | 70 | 114 | 170 | 242 | 25 | 52 | 56 | 93 | 109 | 179 | 267 | 381 |
|  | 11 | 22 | 24 | 39 | 46 | 76 | 113 | 161 | 17 | 34 | 37 | 62 | 73 | 119 | 178 | 254 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |

Роше В Веапा ${ }^{\circledR}$ allowable FLOOR LOAD TABLES LDF=1.0-3000F

These tables can be used to size simple span beams and headers that carry uniform loads. The PLF loads must be calculated and take into account all floor and roof framing loads coming onto the beam or header.
Key: For each clear span there are three numbers:

Row 1: Maximum Total Load with LDF of 1.0, and deflection limited to L/120
Row 2: Maximum Live Load limited by deflection of $\mathrm{L} / 360$
Row 3: Required Bearing Length in trimmer thickness
(e.g. $1.5=1$ trimmer, $3.0=2$ trimmers, etc.)

| ALLOWABLE LOADS FOR ANTHONY POWER BEAM ${ }^{\circledR}$ IN POUNDS PER LINEAR FOOT |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Actual Span | 7" |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Depth (in.) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 7-1/4 | 9-1/4 | 9-1/2 | 11-1/4 | 11-7/8 | 14 | 16 | 18 | 19-1/4 | 205/8 | 22 | 23-3/8 | 24-3/4 | 26-1/8 | 27-1/2 | 28-7/8 |
| $7{ }^{\prime}$ | 2336 | 3803 | 4011 | 5625 | 6267 | 8400 | 10338 | 12600 | 14215 | 16211 | 18480 | 21085 | 24104 | 27647 | 31862 | 36888 |
|  | 2016 | 3803 | 4011 | 5625 | 6267 | 8400 | 10338 | 12600 | 14215 | 16211 | 18480 | 21085 | 24104 | 27647 | 31862 | 36888 |
|  | 1.5 | 3 | 3 | 4.5 | 4.5 | 6 | 7.5 | 9 | 10.5 | 12 | 13.5 | 16.5 | 18 | 21 | 25.5 | 30 |
| 8' | 1789 | 912 | 3071 | 4307 | 4798 | 6669 | 8400 | 10080 | 11249 | 12658 | 14215 | 15947 | 17884 | 20064 | 22537 | 25365 |
|  | 1351 | 2805 | 3039 | 4307 | 4798 | 6669 | 8400 | 10080 | 11249 | 12658 | 14215 | 15647 | 17884 | 20064 | 22537 | 25365 |
|  | 1.5 | 3 | 3 | 4.5 | 4.5 | 6 | 7.5 | 9 | 9 | 10.5 | 12 | 13.5 | 15 | 16.5 | 19.5 | 22.5 |
| 9' | 1413 | 2300 | 2426 | 3403 | 3791 | 5270 | 6883 | 840 | 9306 | 10382 | 11550 | 12823 | 14215 | 15745 | 17434 | 19307 |
|  | 949 | 1970 | 2134 | 3403 | 3791 | 5270 | 6883 | 8400 | 9306 | 10382 | 11550 | 12823 | 14215 | 15745 | 17434 | 19307 |
|  | 1.5 | 3 | 3 | 3 | 4.5 | 4.5 | 6 | 7.5 | 9 | 9 | 10.5 | 12 | 13.5 | 15 | 16.5 | 18 |
| 10' | 1037 | 1863 | 1965 | 2756 | 3071 | 4268 | 5575 | 7056 | 7936 | 8800 | 9726 | 10722 | 11796 | 12956 | 14215 | 15586 |
|  | 692 | 1436 | 1556 | 2584 | 3039 | 4268 | 5575 | 7056 | 7936 | 8800 | 9726 | 10722 | 11796 | 12956 | 14215 | 15586 |
|  | 1.5 | 3 | 3 | 3 | 3 | 4.5 | 6 | 7.5 | 7.5 | 9 | 10.5 | 10.5 | 12 | 13.5 | 15 | 16.5 |
| 11' | 779 | 1540 | 1624 | 2278 | 2538 | 3528 | 4608 | 5811 | 6624 | 7578 | 8400 | 9213 | 10080 | 11007 | 12000 | 13067 |
|  | 520 | 1079 | 1169 | 1941 | 2283 | 3528 | 4608 | 5811 | 6624 | 7578 | 8400 | 9213 | 10080 | 11007 | 12000 | 13067 |
|  | 1.5 | 3 | 3 | 3 | 3 | 4.5 | 6 | 6 | 7.5 | 9 | 9 | 10.5 | 12 | 12 | 13 | 15 |
| 12' | 600 | 1247 | 1351 | 1914 | 2133 | 2964 | 3864 | 4862 | 5542 | 6340 | 7190 | 8076 | 8800 | 9567 | 10382 | 11249 |
|  | 400 | 831 | 900 | 1495 | 1759 | 2882 | 3864 | 4862 | 5542 | 6340 | 7190 | 8076 | 8800 | 9567 | 10382 | 11249 |
|  | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 6 | 7.5 | 7.5 | 9 | 10.5 | 10.5 | 12 | 12 | 13.5 |
| 13' | 472 | 981 | 1062 | 1631 | 1817 | 2526 | 3279 | 4126 | 4703 | 5380 | 6102 | 6867 | 7677 | 8461 | 9149 | 9875 |
|  | 315 | 654 | 708 | 1176 | 1383 | 2267 | 3279 | 4126 | 4703 | 5380 | 6102 | 6867 | 7677 | 8461 | 9149 | 9875 |
|  | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 6 | 6 | 7.5 | 7.5 | 9 | 10.5 | $10.5$ | 12 | 13.5 |
| $14^{\prime}$ | 378 | 785 | 851 | 1406 | 1567 | 2171 | 2817 | 3544 | 4040 | 4622 | 5242 | 5900 | 6595 | 7328 | 8099 | 8800 |
|  | 252 | 523 | 567 | 942 | 1108 | 1815 | 2709 | 3544 | 4040 | 4622 | 5242 | 5900 | 6595 | 7328 | 8099 | 8800 |
|  | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 6 | 6 | 6 | 7.5 | 9 | 9 | 10.5 | 12 | 12 |
| 15' | 307 | 638 | 692 | 1148 | 1351 | 1885 | 2445 | 3077 | 3507 | 4012 | 4550 | 5121 | 5725 | 6362 | 7031 | 7733 |
|  | 205 | 426 | 461 | 766 | 900 | 1476 | 2203 | 3077 | 3507 | 4012 | 4550 | 5121 | 5725 | 1159 | 7031 | 7733 |
|  | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 4.5 | 6 | 6 | 7.5 | 7.5 | 9 | 9 | 10.5 | 12 |
| $16^{\prime}$ | 253 | 526 | 570 | 946 | 1113 | 1651 | 2142 | 2696 | 3073 | 3515 | 3986 | 4487 | 5016 | 5573 | 6160 | 6775 |
|  | 169 | 351 | 380 | 631 | 742 | 1216 | 1815 | 2584 | 3073 | 3515 | 3986 | 4487 | 5016 | 5573 | 6160 | 6775 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 4.5 | 6 | 698 | 7.5 | 7.5 | 9 | 10.5 | 10.5 |
| 17' | 211 | 439 | 475 | 789 | 928 | 1458 | 1892 | 2381 | 2714 | 3104 | 3521 | 3962 | 4430 | 4922 | 5440 | 5983 |
|  | 141 | 292 | 317 | 526 | 619 | 1014 | 1513 | 2154 | 2635 | 3104 | 3521 | 3962 | 4430 | 4922 | 5440 | 5983 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 6 | 6 | 7.5 | 7.5 | 9 | 9 | 10.5 |
| 18' | 178 | 369 | 400 | 665 | 782 | 1281 | 1683 | 2117 | 2413 | 2761 | 3131 | 3524 | 3940 | 4378 | 4838 | 5321 |
|  | 119 | 246 | 267 | 443 | 521 | 854 | 1275 | 1815 | 2220 | 2730 | 3131 | 3524 | 3940 | 4378 | 4838 | 5321 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 4.5 | 6 | 6 | 7.5 | 7.5 | 9 | 9 |
| 19' | 151 | 314 | 340 | 565 | 665 | 1089 | 1506 | 1895 | 2160 | 2471 | 2803 | 3155 | 3526 | 3919 | 4331 | 4763 |
|  | 101 | 209 | 227 | 377 | 443 | 726 | 1084 | 1543 | 1887 | 2321 | 2803 | 3155 | 3526 | 3919 | 4331 | 4763 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 4.5 | 6 | 6 | 7.5 | 7.5 | 9 | 9 |
| $20^{\prime}$ | 130 | 269 | 292 | 484 | 570 | 934 | 1356 | 1706 | 1945 | 2225 | 2523 | 2840 | 3174 | 3527 | 3899 | 4288 |
|  | 86 | 180 | 194 | 323 | 380 | 622 | 929 | 1323 | 1618 | 1990 | 2416 | 2840 | 3174 | 3527 | 3899 | 4288 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 4.5 | 6 | 6 | 6 | 7.5 | 7.5 | 9 |
| 21' | 112 | 233 | 252 | 419 | 492 | 807 | 1204 | 1544 | 1760 | 2013 | 2283 | 2569 | 2872 | 3192 | 3527 | 3880 |
|  | 75 | 155 | 168 | 279 | 328 | 538 | 803 | 1143 | 1398 | 1719 | 2087 | 2503 | 2872 | 3192 | 3527 | 3880 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 4.5 | 4.5 | 6 | 6 | 7.5 | 7.5 | 7.5 |
| 22' | 97 | 202 | 219 | 364 | 428 | 702 | 1047 | 1403 | 1600 | 1830 | 2075 | 2336 | 2611 | 2901 | 3207 | 3527 |
|  | 65 | 135 | 146 | 243 | 285 | 468 | 698 | 994 | 1216 | 1495 | 1815 | 2177 | 2584 | 2901 | 3207 | 3527 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 4.5 | 6 | 6 | 6 | 7.5 | 7.5 |
| 23' | 85 | 177 | 192 | 319 | 375 | 614 | 916 | 1281 | 1460 | 1670 | 1895 | 2132 | 2384 | 2649 | 2927 | 3220 |
|  | 57 | 118 | 128 | 212 | 250 | 409 | 611 | 870 | 1064 | 1309 | 1588 | 1905 | 2261 | 2649 | 2927 | 3220 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 4.5 | 4.5 | 6 | 6 | 7.5 | 7.5 |
| $24^{\prime}$ | 75 | 156 | 169 | 280 | 330 | 540 | 807 | 1148 | 1338 | 1531 | 1736 | 1954 | 2184 | 2427 | 2683 | 2951 |
|  | 50 | 104 | 113 | 187 | 220 | 360 | 538 | 766 | 936 | 1152 | 1398 | 1677 | 1990 | 2341 | 2683 | 2951 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 4.5 | 4.5 | 6 | 6 | 6 | 7.5 |
| $25^{\prime}$ | 66 | 138 | 149 | 248 | 292 | 478 | 714 | 1016 | 1231 | 1408 | 1597 | 1797 | 2009 | 2233 | 2467 | 2714 |
|  | 44 | 92 | 100 | 165 | 194 | 319 | 476 | 677 | 829 | 1019 | 1237 | 1483 | 1761 | 2071 | 2416 | 2714 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 4.5 | 4.5 | 6 | 6 | 6 | 7.5 |
| $26^{\prime}$ | 59 | 123 | 133 | 221 | 259 | 425 | 634 | 903 | 1105 | 1299 | 1473 | 1658 | 1854 | 2060 | 2277 | 2504 |
|  | 39 | 82 | 89 | 147 | 173 | 283 | 423 | 602 | 737 | 906 | 1099 | 1319 | 1565 | 1841 | 2147 | 2486 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 4.5 | 4.5 | 6 | 6 | 6 |
| $27^{\prime}$ | 53 | 109 | 119 | 197 | 232 | 380 | 566 | 807 | 987 | 1203 | 1364 | 1535 | 1716 | 1907 | 2107 | 2318 |
|  | 35 | 73 | 79 | 131 | 154 | 253 | 378 | 538 | 658 | 809 | 982 | 1178 | 1398 | 1644 | 1918 | 2220 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 4.5 | 4.5 | 6 | 6 | 6 |
| $28^{\prime}$ | 47 | 98 | 106 | 177 | 208 | 340 | 508 | 723 | 885 | 1088 | 1266 | 1425 | 1593 | 1770 | 1956 | 2151 |
|  | 32 | 65 | 71 | 118 | 138 | 227 | 339 | 482 | 590 | 725 | 880 | 1056 | 1253 | 1474 | 1719 | 1990 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 4.5 | 4.5 | 4.5 | 6 | 6 |
| 29' | 43 | 88 | 96 | 159 | 187 | 306 | 457 | 651 | 796 | 979 | 1178 | 1326 | 1482 | 1647 | 1820 | 2002 |
|  | 28 | 59 | 64 | 106 | 125 | 204 | 305 | 434 | 531 | 653 | 792 | 950 | 1128 | 1327 | 1548 | 1791 |
| $30^{\prime}$ | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 4.5 | 4.5 | 4.5 | 6 | 6 |
|  | 38 | 80 | 86 | 144 | 169 | 277 | 413 | 588 | 719 | 885 | 1074 | 1237 | 1383 | 1536 | 1698 | 1867 |
|  | 26 | 53 | 58 | 96 | 113 | 184 | 275 | 392 | 479 | 590 | 716 | 858 | 1019 | 1198 | 1398 | 1618 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 3 | 4.5 | 4.5 | 4.5 | 6 | 6 |
| 32' | 32 | 66 | 71 | 118 | 139 | 228 | 340 | 484 | 593 | 729 | 885 | 1061 | 1211 | 1346 | 1487 | 1636 |
|  | 21 | 44 | 47 | 79 | 93 | 152 | 227 | 323 | 395 | 486 | 590 | 707 | 840 | 988 | 1152 | 1333 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |

## POWER PRESERVED GLULAM ${ }^{\ominus}$ <br> CLEAR GUARD ${ }^{\text {TM }}$ TREATED GLULAMS

```
Stocked at Coastal Forest Products Up to 48' Lengths
3-1/2"x 9-1/2" 5-1/4" x 9-1/2" 5-1/4" x 16"
3-1/2" x 11-7/9" 5-1/4" x 11-7/8"
3-1/2" x 14" 5-1/4" x 14"
```

Cop-Guard ${ }^{\oplus}$ (Copper Naphthenate-CuN and Clear-Guard ${ }^{\text {m }}$ (PBC/Permethrin) wood preservatives are both dissolved in low odor mineral spirits as a carrier and are an ideal fungicide and insecticide for the long term preservation of wood products. PPG beams and columns have a green coloration when treated with Cop-Guard ${ }^{\text {® }}$ and have no real color change when treated with Clear-Guard ${ }^{\text {TM }}$ wood preservatives.Clear-Guard ${ }^{T M}$ wood preservative treated glulam is in a solution of IPBC (fungicide) and Permethrin (insecticide) wood preservative listed in AWPA P-58-10. Both preservatives are low in toxicity, environmentally safe, and non-corrosive to fasteners. For more information on Cop-Guard ${ }^{\circledR}$ and Clear-Guard ${ }^{\top \pi}$, please see the SDS sheets and Hoover Technical Notes on our website at www.anthonyforest.com

- Three times as strong as \#2 PT SYP $4 \times 12$
- No strength reductions required after treatment.
- Automatic substitute for Parallam ${ }^{\oplus}$ Plus PSL.
- Stainable and Paintable (See restrictions).
- Not considered hazardous material.


## CONDITIONS OF USE (DRY OR WET)

Power Preserved Glulam ${ }^{\circledR}$ products are recommended for above ground use where the equilibrium moisture content (EMC) of the laminated beam will not exceed $16 \%$ thus allowing dry-use design values (over $16 \%$ considered wet-use.) The definitions of dry and wet service vary from the many publications available on the subject.

## CODE APPROVALS

Power Preserved Glulam ${ }^{\circledR}$ is manufactured in accordance with ANSIA190.1, which is the code recognized standard for glued laminated timber and is accepted nationwide under the CC-ESR 1940 and APA Product Report L282. The adhesive used in our glulam conforms to wet-use complying with ASTM D2559. The APA-EWS is our third party inspection agency.

## POWER PRESERVED GLULAM ${ }^{\circledR}$ (PPG)

Anthony Forest Products ${ }^{\star}$ has been a name to trust in the glued laminated timber business for over 45 years. Anthony stock $2400 \mathrm{Fb}-2.1 \mathrm{E}-300 \mathrm{Fv}$ SYP glulam has been our mainstay in business along with the high strength Power Beam ${ }^{\ominus} 3000 \mathrm{Fb}$ -1.8E-300Fv IJC beam.

With the shortage of high-quality, high strength, solid southern pine treated timber, Anthony offers Power Preserved Glulam ${ }^{\ominus}$ Beams, which have been pressure treated with Hoover Cop-Guard ${ }^{\text {® }}$ or Clear-Guard ${ }^{\text {TM }}$ at .04 pounds per cubic foot (PCF) or .02 pounds per cubic foot retention levels suitable for above ground uses respectively. Power Preserved Glulam ${ }^{\oplus}$ products will resist fungal decay and wood-destroying insect attacks and are covered by a 25 year warranty by Hoover.

## FACT SHEET

- 2400Fb-1.8E-300Fv SYP glulam industrial grade.
- High strength allows for reduction in size columns or number of pilings and piers.
- Two separate warranties for your protection.
- Balanced lay-up and zero camber.
- No top or bottom.
- As environmentally safe as untreated wood.
- Above ground use for beams (AWPA use categories UC3B) and ground contact for the columns (AWPA use categories UC4A, UC4B and UC4C).
- For PPG Beams sizes not listed, please call Anthony Forest.


## FASTENERS

- Non-Corrosive fasteners may be used with PPG in protected areas.
- Corrosion resistant fasteners are required if a connection is made to other water borne copper treated wood.
- Local building code requirements will always supersede above restrictions.
- Above ground use for beams (AWPA use categories UC3B) and ground contact for the columns (AWPA use categories UC4A, UC4B and UC4C).
- For PPG Beams sizes not listed, please call Anthony Forest.



## POWER PRESERVED GLULAM ${ }^{\circledR}$ CLEAR GUARD ${ }^{\text {TM }}$ TREATED GLULAMS

## Treated Glulam Allowable Floor Loads (plf)

EWS 24F-V5M1/SP • Dry-Use $\cdot \mathrm{F}_{\mathrm{b}}=2,400 \mathrm{psi} \cdot \mathrm{F}_{\mathrm{v}}=300 \mathrm{psi} \cdot E=1.8 \times 10^{6} \mathrm{psi} \cdot F_{c}=740 \mathrm{psi} \cdot($ LDF=1.00 $)$

| Width <br> (in) | Depth <br> (in) | Load Condition | Span (feet) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 |
| 3-1/2" | $91 / 2$ | Total Load | 2108 | 1293 | 827 | 474 | 298 | 200 | 140 | 102 | 77 | 59 | 47 |
|  |  | Live Load | -- | 1279 | 655 | 379 | 239 | 160 | 112 | 82 | 62 | 47 | 37 |
|  |  | Min. End/Int.Bearing (in.) | 2.5/6.3 | 2.0/5.0 | 1.6/4.0 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 |
|  | $117 / 8$ | Total Load <br> Live Load <br> Min. End/Int.Bearing (in.) | $\begin{gathered} 2901 \\ --- \\ 3.4 / 8.5 \end{gathered}$ | $\begin{gathered} 1918 \\ --- \\ 3.0 / 7.5 \end{gathered}$ | $\begin{gathered} 1293 \\ 1279 \\ 2.5 / 6.3 \\ \hline \end{gathered}$ | $\begin{gathered} 898 \\ 740 \\ 2.1 / 5.3 \end{gathered}$ | $\begin{gathered} 583 \\ 466 \\ 1.6 / 4.0 \end{gathered}$ | $\begin{gathered} 390 \\ 312 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 274 \\ 219 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 200 \\ 160 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 150 \\ 120 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 116 \\ 93 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 91 \\ 73 \\ 1.5 / 3.8 \\ \hline \end{gathered}$ |
|  | 14 | Total Load | 3743 | 2401 | 1782 | 1248 | 917 | 702 | 449 | 328 | 246 | 190 | 149 |
|  |  | Live Load | --- | --- | 1784 | 1213 | 764 | 512 | 359 | 262 | 197 | 152 | 119 |
|  |  | Min. End/Int.Bearing (in.) | 4.4/11.0 | 3.8/9.5 | 3.5/8.8 | 2.9/7.3 | 2.8/7.0 | 2.2/5.5 | 1.6/4.0 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 |
|  | 16 | Total Load Live Load Min. End/Int.Bearing (in.) | 4719 5.6/14.0 | $\begin{gathered} 2926 \\ ---1.6 / 11.5 \end{gathered}$ |  | $\begin{gathered} 1615 \\ --- \\ 3.8 / 9.5 \end{gathered}$ | $\begin{gathered} 1182 \\ 1140 \\ 3.3 / 8.3 \end{gathered}$ | $\begin{gathered} 901 \\ 764 \\ 2.8 / 7.0 \end{gathered}$ | $\begin{gathered} 671 \\ 537 \\ 2.4 / 6.0 \end{gathered}$ | $\begin{gathered} 489 \\ 391 \\ 1.9 / 4.8 \end{gathered}$ | $\begin{gathered} 367 \\ 294 \\ 1.6 / 4.0 \end{gathered}$ | $\begin{gathered} 283 \\ 226 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 223 \\ 178 \\ 1.5 / 3.8 \end{gathered}$ |
|  | 18 | Total Load | 5917 | 3522 | 2485 | 2046 | 1499 | 1143 | 899 | 725 | 523 | 403 | 317 |
|  |  | Live Load | --- | --- | --- | --- | --- | 1088 | 764 | 557 | 418 | 322 | 253 |
|  |  | Min. End/Int.Bearing (in.) | 7.0/17.5 | 5.5/13.8 | 4.9/2.3 | 4.8/12.0 | 4.1/10.3 | 3.6/9.0 | 3.2/8.0 | 2.8/7.0 | 2.3/5.8 | 1.9/4.8 | 1.6/4.0 |
| 5-1/4" | $91 / 2$ | Total Load Live Load Min. End/Int.Bearing (in.) | $\begin{gathered} 3199 \\ -- \\ 2.5 / 6.3 \end{gathered}$ | $\begin{gathered} 1948 \\ 1181 \\ 2.0 / 5.0 \end{gathered}$ | $\begin{gathered} 1264 \\ 605 \\ 1.6 / 4.0 \end{gathered}$ | $\begin{gathered} 719 \\ 350 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 453 \\ 220 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 303 \\ 148 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 214 \\ 104 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 156 \\ 76 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 117 \\ 57 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 90 \\ 44 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 71 \\ 34 \\ 1.5 / 3.8 \end{gathered}$ |
|  | 117/8 | Total Load | 4403 | 2910 | 1944 | 1344 | 885 | 593 | 419 | 305 | 229 | 177 | 139 |
|  |  | Live Load | --- | --- | --- | 1131 | 712 | 477 | 335 | 244 | 183 | 141 | 111 |
|  |  | Min. End/Int.Bearing (in.) | 3.4/8.5 | 3.0/7.5 | 2.5/6.3 | 2.1/5.3 | 1.6/4.0 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 |
|  | 14 | Total Load <br> Live Load <br> Min. End/Int.Bearing (in.) | $\begin{gathered} 5679 \\ --- \\ 4.4 / 11.0 \end{gathered}$ | $3644$ 3.8/9.5 | $\begin{gathered} 2707 \\ -- \\ 3.5 / 8.8 \end{gathered}$ | $\begin{gathered} 1874 \\ 1853 \\ 2.8 / 7.0 \\ \hline \end{gathered}$ | $\begin{gathered} 1371 \\ 1167 \\ 2.8 / 6.3 \\ \hline \end{gathered}$ | $\begin{gathered} 1044 \\ 782 \\ 2.2 / 5.5 \end{gathered}$ | $\begin{gathered} 682 \\ 549 \\ 1.6 / 4.0 \end{gathered}$ | $\begin{gathered} 497 \\ 400 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 373 \\ 301 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 289 \\ 232 \\ 1.5 / 3.8 \end{gathered}$ | $\begin{gathered} 228 \\ 182 \\ 1.5 / 3.8 \end{gathered}$ |
|  | 16 | Total Load | 7161 | 4440 | 3188 | 2425 | 1794 | 1400 | 1018 | 742 | 558 | 460 | 340 |
|  |  | Live Load | --- | --- | --- | --- | 1741 | 1167 | 819 | 597 | 449 | 346 | 272 |
|  |  | Min. End/Int.Bearing (in.) | 5.6/14.0 | 4.6/11.5 | 4.1/10.3 | 3.8/9.5 | 3.3/8.3 | 2.8/7.0 | 2.4/6.0 | 1.9/4.8 | 1.6/4.0 | 1.5/3.8 | 1.5/3.8 |
|  | 18 | Total Load Live Load Min. End/Int.Bearing (in.) | $\begin{gathered} 8979 \\ --- \\ 7.0 / 17.5 \end{gathered}$ | $\begin{gathered} 5343 \\ ---1.5 / 13.8 \end{gathered}$ | $\begin{gathered} 3770 \\ -- \\ 4.912 .3 \end{gathered}$ | $\begin{gathered} 3106 \\ ---12.0 \end{gathered}$ | $\begin{gathered} 2274 \\ ---1 / 10.3 \end{gathered}$ | $\begin{gathered} 1734 \\ 1661 \\ 3.6 / 9.0 \end{gathered}$ | $\begin{gathered} 1365 \\ 1167 \\ 3.2 / 8.0 \end{gathered}$ | $\begin{gathered} 1128 \\ 851 \\ 2.8 / 7.0 \end{gathered}$ | $\begin{gathered} 794 \\ 639 \\ 2.3 / 5.8 \end{gathered}$ | $\begin{gathered} 615 \\ 492 \\ 1.9 / 4.8 \end{gathered}$ | $\begin{gathered} 484 \\ 387 \\ 1.6 / 4.0 \end{gathered}$ |

## NOTES:

1. Values shown are the maximum uniform loads (beam weight included) in pounds per linear foot (PLF) that can be applied to the beam.
2. These tables are for preliminary design when considering load and other conditions.

The final design should include complete design analysis.
3. Bearing lengths shown in the third row of each cell are for maximum PLF loads for the two end bearings and for the middle or intermediate bearings when beam is continuous. A shorter bearing may be used if proper analysis is done.
4. Live load is based on the deflection criterion of $L / 360$ and includes the beam weight ( 48 pcf ).
5. Total load is based on the deflection criterion with a LL/DL ration of 4 or higher.
6. For deflection limits of $\mathrm{L} / 240$ and $\mathrm{L} / 480$, multiply the live load figures by 1.5 and 0.75 respectfully.
7. The beam is assumed to be loaded on the top edge and with full lateral support at bearing points.
8. Selected beam must satisfy both live and total load.
9. Where no live load shows, live load is the same as total load.
10. Call Coastal Forest Products for sizes not listed.

## Stock Sizes



## Power Column ${ }^{\circledR}$ COMBINATION \#50

## FEATURES:

- Combination \#50
(\#1 Dense SYP)
- $\mathrm{MOE}=1.9 \times 10 \mathrm{psi}$
- $\mathrm{Fb}=2100-2300 \mathrm{psi}$
- $\mathrm{Fc}_{\mathrm{c}}=1700-2300 \mathrm{psi}$
- Treated Columns Available


## Power Column ${ }^{\circledR}$ COMBINATION\#50

## Allowable Axial Loads (Pounds) for Combination No. 50

Side loads are not permitted. End loads are limited to a maximum eccentricity of either $1 / 6$ column width or depth, whichever is worse.

| Effective Column Length (ft) | Lamination Net Width = 3-12" |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Net Depth = 3-1/2" (3 lams) |  |  | Net Depth $=4-1 / 8^{\prime \prime}$ ( 3 lams) |  |  | Net Depth = 5-1/2" (4 lams) |  |  | Net Depth = 7" (6 lams) |  |  |
|  | 1.00 | 1.15 | 1.25 | Load Duration Factor |  |  | Load Duration Factor |  |  | Load Duration Factor |  |  |
|  |  |  |  | 1.00 | 1.15 | 1.25 | 1.00 | 1.15 | 1.25 | 1.00 | 1.15 | 1.25 |
| 4 | 11,750 | 13,130 | 13,990 | 14,410 | 16,190 | 17,320 | 22,740 | 25,110 | 26,560 | 29,700 | 32,950 | 34,950 |
| 6 | 9,130 | 9,810 | 10,200 | 11,330 | 12,150 | 12,610 | 16,260 | 17,220 | 17,770 | 21,900 | 23,300 | 24,110 |
| 8 | 6,600 | 6,910 | 7,090 | 8,100 | 8,460 | 8,670 | 11,220 | 11,660 | 11,920 | 15,350 | 16,000 | 16,370 |
| 10 | 4,830 | 5,000 | 5,090 | 5,880 | 6,070 | 6,190 | 8,040 | 8,290 | 8,430 | 11,090 | 11,450 | 11,650 |
| 12 | 3,650 | 3,750 | 3,810 | 4,420 | 4,540 | 4,610 | 6,010 | 6,160 | 6,250 | 8,330 | 8.540 | 8,670 |
| 14 | 2,840 | 2,910 | 2,950 | 3,430 | 3,510 | 3,550 | 4,650 | 4,750 | 4,800 | 6,460 | 6,600 | 6,680 |


| Effective Column Length (ft) | Lamination Net Width = 5-1/2" |  |  |  |  |  | Lamination Net Width = 7" <br> Net Depth = 7" (6 lams) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Net Depth = 5-1/2" (4 lamas) |  |  | Net Depth = 7" ( 6 lams) |  |  |  |  |  |
|  | Load Duration Factor |  |  | Load Duration Factor |  |  | Load Duration Factor |  |  |
|  | 1.00 | 1.15 | 1.25 | 1.00 | 1.15 | 1.25 | 1.00 | 1.15 | 1.25 |
| 6 | 32,920 | 36,550 | 38,810 | 45,610 | 51,260 | 54,840 |  |  |  |
| 8 | 27,420 | 29,640 | 30,950 | 39,290 | 42,590 | 44,520 | 53,480 | 59,380 | 63,060 |
| 10 | 21,970 | 23,280 | 24,000 | 31,680 | 33,560 | 34,650 | 46,900 | 51,070 | 53,550 |
| 12 | 17,550 | 18,380 | 18,850 | 25,300 | 26,470 | 27,140 | 40,070 | 42,840 | 44,450 |
| 14 | 14,200 | 14,760 | 15,080 | 20,430 | 21,210 | 21,660 | 38,840 | 35,730 | 36,830 |
| 16 | 11,670 | 12,060 | 12,290 | 16,760 | 17,300 | 17,610 | 28,630 | 29,990 | 30,770 |
| 18 | 9,730 | 10,020 | 10,180 | 13,950 | 14,350 | 14,580 | 24,400 | 25,400 | 25,980 |
| 20 | 8,230 | 8,440 | 8,570 | 11,780 | 12,080 | 12,250 | 20,980 | 21,740 | 22,180 |
| 22 | 7,040 | 7,210 | 7,300 | 10,070 | 10,290 | 10,420 | 18,190 | 18,780 | 19,120 |
| 24 | --- | ---- | ---- | --_-- | ----- | -- | 15,900 | 16,370 | 16,640 |

## NOTES and Allowable Design Properties

1. The tabulated allowable loads apply to one-piece glulam members made with all N1D14 laminations (Combination 50 ) without special tension laminations.
2. Applicable service conditions = dry.
3. The tabulated allowable loads are based on simply axially loaded columns subjected to a maximum eccentricity of either $1 / 6$ column width or $1 / 6$ column depth, whichever is worse. For side loads, other eccentric end loads, or other combined axial and flexural loads, see 2005 NDS.
4. The column is assumed to be unbraced, except at the column ends, and the effective column length is equal to the actual column length.
5. Design properties for normal load duration and dry-use service conditions:

- Compression parallel to grain $\left(\mathrm{Fc}_{\mathrm{c}}\right)=2,300$ psi for 4 or more lams, or $1,700 \mathrm{psi}$ for 2 or 3 lams.
- Modulus of elasticity $(E)=1.9 \times 10 \mathrm{psi}$.
- Flexural stress when loaded parallel to wide faces of lamination (Fby) $=2,300$ psi for 4 or more lams, or 2,100 psi for 3 lams.
- Lexural stress when loaded perpendicular to wide faces of lamination (Fbx) $=2,100$ psi for 2 lams to 15 " deep without special tension laminations.
- Volume factor for Fbx is in accordance with 2005 NDS. Size factor for Fby is $(12 / \mathrm{d})^{19}$, where $d$ is equal to the lamination width inches.


## COASTAL ENGINEERED FRAMING LUMBER

－1．6 MOE
－Same size as SPF／Fir（1－1／2＂）
－Low moisture content means dimensionally stable
－Ideal for long rafters（up to 32＇）
－Similar spans like I－joists
－Approved as substitute in new IRC fire code
－Uses standard size joist hangers
－MSP Black Spruce
－Frame roof with traditional compression ridge and collar ties
－No problem notching birdmouths
－Every piece is wane free！
－Excellent product for stair stringers！
－No cracks，rot or large knots，dried to $14 \%$
－Engineered sizing available through CSD
－I－Struct software
－MOE 1.6 （ Modulas of Elasticity）
－Fb 1200 psi（Fiber Bending）
－Fv 135 psi（Shear）
－Fc 1600 psi（Compression Parallel to Grain）
－These values are based on normal load duration．
－When structural members qualify as repetitive members in accordance with applicable code，a 4\％increase is permitted to Fb ．
－Manufactured by Lamco EWP

## COASTAL ENGINEERING FRAMING LUMBER SPANS

## Coastal Engineering Framing Lumber Spans

| F | Chart Based Upon Uniform Loads |  | Floor Joists - 40 psf Live Load, 10 psf Dead Load, L/480 |  |  |  | Floor Joists - 40 psf Live Load, 10 psf Dead Load, L/360 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Size | Strength | 12" O.C. | 16" O.C. | 19.2" O.C. | 24"O.C. | 12"O.C. | 16" O.C. | 19.2" O.C. | 24" O.C. |
| R | 1-1/2" $\times 7-1 / 4^{\prime \prime}$ | 1.6 MOE | 13'09' | 12'09" | 12'02" | 11'02" | 15'02" | 13'08" | 12'06" | 11'02" |
| S | 1-1/2" $\times$ 9-1/4" | 1.6 MOE | 17'02" | 15'11" | 15'02" | 13'08" | 18'11" | 16'09" | 15'03" | 13'08" |
| P | 1-1/2" $\times 11-1 / 4^{\prime \prime}$ | 1.6 MOE | 20'08" | 19'01" | 17'11" | 16'01" | 22'09" | 19'08" | 17'11" | 16'01" |
| A | $1-1 / 2^{\prime \prime} \times 14^{\prime \prime}$ | 1.6 MOE | 25'05" | 23'05" | 21'06" | 19'03" | 27'03" | 23'07" | 21'06" | 19'03" |
| S | 1-1/2v x $16^{\prime \prime}$ | 1.6 MOE | 28'10" | 26'04" | 24'01" | 24'06" | 30'05" | 26'04" | 24'01" | 21'06" |
|  |  |  |  |  |  |  |  |  |  |  |
|  | Size | Strength | 12" O.C. | 16" O.C. | 19.2" O.C. | 24" O.C. |  |  |  |  |
|  | 1-1/2" x 7-1/4" | 1.6 MOE | 17'02" | 15'05" | 14'01" | 12'07" | 40 PSF Ground Snow Load 10PSF Dead Load, |  |  |  |
|  | 1-1/2" $\times$ 9-1/4" | 1.6 MOE | 21'02" | 18'11" | 17'03" | 15'05" |  |  |  |  |
|  | 1-1/2" $\times 11-1 / 4^{\prime \prime}$ | 1.6 MOE | 25'08" | 22'03" | 20'04" | 18'02" |  |  |  |  |
|  | $1-1 / 2^{\prime \prime} \times 14^{\prime \prime}$ | 1.6 MOE | 30'09" | 26'08" | 24'04" | 21'09" | Live Load L/240 Total Load L/180 |  |  |  |
|  | 1-1/2" $\times 16^{\prime \prime}$ | 1.6 MOE | 31'08" | 29'09" | 27'02" | 24'04" |  |  |  |  |
| R |  |  |  |  |  |  |  |  |  |  |
| 0 | Size | Strength | 12" O.C. | 16" O.C. | 19.2" O.C. | 24" O.C. |  |  |  |  |
|  | 1-1/2"x 7-1/4" | 1.6 MOE | 15'10" | 14'04" | 13'04" | 11'11" | 52 PSF Ground Snow Load 10 PSF Dead Load |  |  |  |
| 0 | 1-1/2" $\times 9-1 / 4^{\prime \prime}$ | 1.6 MOE | 20'02" | 17'11" | 16'04" | 14'07" |  |  |  |  |
|  | 1-1/2"x 11-1/4" | 1.6 MOE | 24'04" | 21'01" | 19'03" | 17'02" |  |  |  |  |
| F | $1-1 / 2^{\prime \prime} \times 14^{\prime \prime}$ | 1.6 MOE | 29'03" | 25'03" | 23'01" | 20'08" | Live Load L/240 Total Load L/180 |  |  |  |
|  | 1-1/2" $\times 16{ }^{\prime \prime}$ | 1.6 MOE | 32'08" | 28'03" | 25'10" | 23'01" |  |  |  |  |
| 5 | Size | Strength | 12" O.C. | 16" O.C. | 19.2" O.C. | 24" O.C. |  |  |  |  |
| P | 1-1/2" $\times 7-1 / 4^{\prime \prime}$ | 1.6 MOE | 14'02" | 12'10" | 11'08" | 10'06" | 70 PSF Ground Snow Load 10 PSF Dead Load |  |  |  |
|  | 1-1/2" $\times$ 9-1/4" | 1.6 MOE | 18'02" | 15'09" | 14'04" | 12'10" |  |  |  |  |
| A | 1-1/2" $\times 11-1 / 4^{\prime \prime}$ | 1.6 MOE | 21'04" | 18'06" | 16'10" | 15'01" |  |  |  |  |
| N | $1-1 / 2^{17} \times 14^{\prime \prime}$ | 1.6 MOE | 25'07" | 22'02" | 20'03" | 18'01" | Live Load L/240 Total Load L/180 |  |  |  |
|  | 1-1/2" $\times 16^{\prime \prime}$ | 1.6 MOE | 32'08" | 28'03" | 25'10" | 23'01" |  |  |  |  |
| S |  |  |  |  |  |  |  |  |  |  |
|  | Size | Strength | 12" O.C. | 16" O.C. | 19.2" O.C. | 24" O.C. |  |  |  |  |
|  | 1-1/2" $\times 7-1 / 4^{\prime \prime}$ | 1.6 MOE | 13'01" | 11'07" | 10'07" | 9'05" | 91 PSF Ground Snow Load 10 PSF Dead Load |  |  |  |
|  | $1-1 / 2^{\prime \prime} \times 9-1 / 4^{\prime \prime}$ | 1.6 MOE | 16'04" | 14'02" | 12'11" | 11'07" |  |  |  |  |
|  | 1-1/2" $\times 11-1 / 4^{\prime \prime}$ | 1.6 MOE | 19'03" | 16'08" | 15'02" | 13'07" |  |  |  |  |
|  | $1-1 / 2^{\prime \prime} \times 14^{\prime \prime}$ | 1.6 MOE | 23'01" | 20'00" | 18'03" | 16'04" | Live Load L/240 Total Load L/180 |  |  |  |
|  | 1-1/2" $\times 16{ }^{\prime \prime}$ | 1.6 MOE | 25'10" | 22'04" | 20'05" | 18'03" |  |  |  |  |

Support Requirements: Rafters must have adequate support. Ceiling joists are not required when properly designed ridge beams are used. A ridge board may be substituted for a ridge beam when the slope equals or exceeds 3 in 12, except that ridge beams are required for cathedral ceilings. Ridge boards must be 1 " nominal thickness and not less than the depth of the cut end of the rafter. Rafters must be placed directly opposite each other, and ceiling joists must be installed parallel to the rafters to provide a continuous tie between exterior walls or alternatively, standard building code approved Ridge Board and Collar-Tie framing is acceptable.

Rafter spans do not include composite action of adhesive and sheathing. Uplift loads caused by wind also have not been considered. Spans in the tables are given in feet and inches and are the maximum allowable horizontal span of the member from inside to inside of bearings. For sloping rafters, the span is also measured along the horizontal projection.
For rafters, the load duration used in these tables is 1.15 (Cd). Rafter spans have been evaluated for wind loads up to and including Vasd=110 mph, to determine that wind does not control design. For wind greater than Vasd=110 mph, engineering design is required.

## POWER PRESERVED COLUMN®

## PRESSURE TREATED COLUMNS

Stocked at Coastal Forest Products Up to 28＇Lengths
5－1／2＂$\times 5$ 1／2＂－up to $28^{\prime}$

## POWER PRESERVED COLUMN ${ }^{\ominus}$

Anthony Forest Products offers our popular Power Column ${ }^{\circledR}$ as a Power Preserved Column ${ }^{\circledR}$ for ground contact using Hoover Cop－Guard ${ }^{\oplus}$ These columns are treated to the high retention level of 0．075 PCF，meeting AWPA use categories 4A，4B and 4C （should not be used in direct contact with water）．

## Suggested Uses：（Exterior only）

－Deck support columns and boardwalks
－Residential and commercial exposed structural columns
－Raised coastal construction supports replacing piling
－Industrial and farming applications
－Pedestrian bridges and park shelters
－Pergolas


| Power Preserved Column Design Values ${ }^{1}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Combination \#50 } \\ & \text { \#1 Dense SYP } \end{aligned}$ | $\mathrm{F}_{\mathrm{b}} \mathrm{x}$－x axis | $F_{\text {b }} \mathrm{y}$－ y axis |  | MOE | $\begin{aligned} & \text { Compression } \\ & \text { Parallel to } \mathrm{Grain} \mathrm{~F}_{\mathrm{C} 1}= \end{aligned}$ |  |
|  | $\mathrm{F}_{\mathrm{b}}$ | 3 laminations | $\begin{gathered} 4 \text { or more } \\ \text { laminations } \end{gathered}$ |  | 3 laminations | 4 or more |
| Design Value | 2，100 psi | 2，100 | 2，300 | $1.9 \times 10^{6}$ | 1，700 | 2，300 |
| Wet－Use Factor | 0.8 | 0.8 | 0.8 | 0.833 | 0.53 | 0.73 |
| ${ }^{1}$ The tabulated values are for moisture content of less than 16\％．Apply wet－use adjustment factors for columns in direct contact with the ground． Use of column bases or standoff may allow for dry－use． |  |  |  |  |  |  |



Besides the best product on the market，individual house jobs are delivered with color－coded plans with corresponding labeled lumber components

## THE MOST POWERFUL SOFTWARE TOOLS IN THE MARKET

## iStruct ${ }^{\text {m }}$ software suite featuring isPlan ${ }^{\text {TM }}$ and is Design ${ }^{T \mathrm{~m}}$

Our goal is to provide our customers with the best information services in the industry. Coastal Forest Products supplies its customer base with various software tools to perform daily engineering and drawing functions required in today's market.
isPlan ${ }^{T M}$ includes capabilities to draw and design EWP framing plans (floor and roof layouts), structural analysis and reporting, takeoffs, quotes, cutting and the single member design (beam software), that supports the full Coastal Forest Products product line. isPlan ${ }^{\text {TM }}$ will automatically develop loads and produce bold color graphics layouts in 2D and 3D. (Intended for the lumber yard that has dedicated design staff to operate.)
isDesign ${ }^{\text {TM }}$ is a single member sizing program that is user friendly and reflects impeccable graphics that make the beam calc easy to read and pleasant to look at. isDesign ${ }^{\text {TM }}$ will analyse loads, calculate sizes and spacing for Coastal engineered products. isDesign ${ }^{\text {TM }}$ requires little or no training for the architect or engineer/designer specifying designs with Coastal engineered products.

## Coastal Forest Products Customers Receive:

- No charge for isDesign ${ }^{\text {TM }}$ single member sizing software.
- No charge for customers to distribute is Design ${ }^{\text {TM }}$ to its customer base.
- Printed calc sheets showing sheer, deflection, moment and reaction
- Value engineered framing plans.
- Internet software training and support.
- Internet updates for all software.

The
iStruct ${ }^{\text {TM }}$ software suite is truly a solution like no other and is designed for quick learning and entry.
Training is reduced significantly so users are up and running quickly and cost effective.
What you get from Coastal Forest Products is what your customers expect from you -
The best tool and best service possible!


## NORDIC

structures

***All spans base on typical residential $40 / 10$ loading, I/480 16" O/C

## COASTAL PRO



|  | NEW | MEETS IRC FIRECODES |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| Treated LVL |  |  |  |  |  |  |  |  |
|  |  | Engineered Framing Lumber |  |  |  |  |  |  |
|  |  | 1-1/2" wide, 1.6 MOE |  |  |  |  |  |  |
|  |  | 2"x4" - up to 16' lengths |  |  |  |  |  |  |
|  |  | 2 "x6" - up to 20' lengths |  |  |  |  |  |  |
|  |  | 2"x10"-2"x12"-2"x14" up to 32' lengths | 2"x4" | 2"x6" | 2"x8" | 2"x10" | 2"x12" | 2"x14" |
| 9-1/2" ${ }^{\text {" }}$ 11-7/8" | $14 " 16$ | $2{ }^{\prime \prime} \times 8$ " - up to 28 ' lengths | (3-1/2") | (5-1/2") | (7-1/4") | (9-1/4') | (11-1/4") | (13-1/4") |

SIMPSON
StrongTie
Matching Connectors In-Stock!!!


Spans up to 22'00"
Norbord



## ANTHONY*

Power Beam ${ }^{\circ}$


Power Preserved Glulam ${ }^{\text {m }}$


Power Column ${ }^{\text {® }}$
1.8 MOE / 2400Fb


## ADDITIONAL SERVICES

Full Stocking Inventory for Prompt Delivery
Inventory is Kept Covered
Jobsite Delivery Available*
In-house Design Specialists
Prompt Turnaround for Drawings
Scanning, Printing, Laminating Available*
Commercial Joists/Architectural Glulams Available*
Stamped Calcs Available*
iStruct ${ }^{\circledR}$ Software Available*
In-House/On-site Training*
*See Coastal Rep for more details

## THE COASTALADVANTAGE

Job-site delivery available in most areas
Full scanning \& printing capabilities
Covered storage of engineered products
Rapid turnaround of plans
Wide range of engineered products
Commercial joists available
In-house and on site training available
Architectural Glulams \& curved Glulams

## SIMPSON

Strongytie
COASTAL PRO-I

## Norbord

## TRIFORCE




Website www.coastalfp.com
Toll Free 800.932.9663
Fax 603.634.4444
Email plans@coastalfp.com
f 0 in


[^0]:    Alternate Method 2
    DOUBLE CPI/NI JOIST
    

    CPI/NI blocking panel or rim board blocking. Attach per Detail 1g.

    Block CPI/NI joists together with filler blocks for the full length of the reinforcement. For joist flange widths greater than 3", place an additional row of 10 d nails along the centerline of the reinforcing panel from each side. Clinch when possible.

    Face nail two rows 10d at 12" o.c. each side through one I-joist web and the filler block to other I-joist web. Offset nails from opposite face by 6 ". Clinch if possible (four nails per foot required, except two nails per foot required if clinched).

[^1]:    Uplift connections may be required

